Solution to a n ​ −4a n−1 ​ +4a n−2 ​ =n 2 \displaystyle\sum_{n=2}^{\infin}a_nx^n-4\displaystyle\sum_{n=2}^{\infin}a_{n-1}x^{n}+4\displaystyle\sum_{n=2}^{\infin}a_{n-2}x^{n}=\displaystyle\sum_{n=2}^nn^2x^n n=2 ∑ ∞ … - Sikademy
Author Image

Archangel Macsika

a n ​ −4a n−1 ​ +4a n−2 ​ =n 2 \displaystyle\sum_{n=2}^{\infin}a_nx^n-4\displaystyle\sum_{n=2}^{\infin}a_{n-1}x^{n}+4\displaystyle\sum_{n=2}^{\infin}a_{n-2}x^{n}=\displaystyle\sum_{n=2}^nn^2x^n n=2 ∑ ∞ ​ a n ​ x n −4 n=2 ∑ ∞ ​ a n−1 ​ x n +4 n=2 ∑ ∞ ​ a n−2 ​ x n = n=2 ∑ n ​ n 2 x n From the table \displaystyle\sum_{n=0}^nn^2x^n=0+x+2^2x^2+3^2x^3+...=\dfrac{x(x+1)}{(1-x)^3} n=0 ∑ n ​ n 2 x n =0+x+2 2 x 2 +3 2 x 3 +...= (1−x) 3 x(x+1) ​ G(x)-2-5x-4x(G(x)-2)+4x^2G(x)G(x)−2−5x−4x(G(x)−2)+4x 2 G(x) =\dfrac{x(x+1)}{(1-x)^3}-x= (1−x) 3 x(x+1) ​ −x G(x)(1-4x+4x^2)=\dfrac{x(x+1)}{(1-x)^3}-4x+2G(x)(1−4x+4x 2 )= (1−x) 3 x(x+1) ​ −4x+2 G(x)=\dfrac{x^2+x}{(1-x)^3(1-2x)^2}+\dfrac{2}{1-2x}G(x)= (1−x) 3 (1−2x) 2 x 2 +x ​ + 1−2x 2 ​ \dfrac{x^2+x}{(1-x)^3(1-2x)^2}=\dfrac{A}{(1-x)^3}+\dfrac{B}{(1-x)^2}+\dfrac{C}{1-x} (1−x) 3 (1−2x) 2 x 2 +x ​ = (1−x) 3 A ​ + (1−x) 2 B ​ + 1−x C ​ +\dfrac{D}{(1-2x)^2}+\dfrac{E}{1-2x}+ (1−2x) 2 D ​ + 1−2x E ​ A(1-2x)^2+B(1-x)(1-2x)^2A(1−2x) 2 +B(1−x)(1−2x) 2 +C(1-x)^2(1-2x)^2+D(1-x)^3+C(1−x) 2 (1−2x) 2 +D(1−x) 3 +E(1-x)^3(1-2x)=\dfrac{x^2+x}{(1-x)^3(1-2x)^2}+E(1−x) 3 (1−2x)= (1−x) 3 (1−2x) 2 x 2 +x ​ x=0:A+B+C+D+E=0x=0:A+B+C+D+E=0 x=-1:9A+18B+36C+8D+24E=0x=−1:9A+18B+36C+8D+24E=0 x=1:A=2x=1:A=2 x=1/2:D=6x=1/2:D=6 x=2:9A-9B+9C-D+3E=6x=2:9A−9B+9C−D+3E=6 A=2, B=-3, C=-3, D=6, E=-2A=2,B=−3,C=−3,D=6,E=−2 G(x)=\dfrac{2}{(1-x)^3}-\dfrac{3}{(1-x)^2}-\dfrac{3}{1-x}G(x)= (1−x) 3 2 ​ − (1−x) 2 3 ​ − 1−x 3 ​ +\dfrac{6}{(1-2x)^2}-\dfrac{2}{1-2x}+\dfrac{2}{1-2x}+ (1−2x) 2 6 ​ − 1−2x 2 ​ + 1−2x 2 ​ \def\arraystretch{1.5} \begin{array}{c:c} \dfrac{2}{(1-x)^3} & 2\dbinom{n+2}{2} \\ \\ -\dfrac{3}{(1-x)^2} & -3(n+1)\\ \\ -\dfrac{3}{1-x} & -3 \\ \\ \dfrac{6}{(1-2x)^2} & 6(n+1)(2^n) \end{array} (1−x) 3 2 ​ − (1−x) 2 3 ​ − 1−x 3 ​ (1−2x) 2 6 ​ ​ 2( 2 n+2 ​ ) −3(n+1) −3 6(n+1)(2 n ) ​ a_n=2\dbinom{n+2}{2}-3(n+1)-3+6(2^n)(n+1)a n ​ =2( 2 n+2 ​ )−3(n+1)−3+6(2 n )(n+1)

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

a)

2,5,8,11,14,17,20,23,26,29

b)


1,1,1,2,2,2,3,3,3,4

c)


1,1,3,3,5,5,7,7,9,9

d)


a_1=1!-2(1)=-1

a_2=2!-2(2)=-2

a_3=3!-2(3)=0

a_4=4!-2(4)=16

a_5=5!-2(5)=110

a_6=6!-2(6)=708

a_7=7!-2(7)=5026

a_8=8!-2(8)=40304

a_9=9!-2(9)=362862

a_{10}=10!-2(10)=3628780


-1,-2,0, 16, 110, 708, 5026,40304,362862,3628780

e)


3,6,12,24,48,96,192,384,768,1536

f)


2,4,6,10,16,26,42,68,110,178

g)


2,4,8,16,32,64,128,256,512,1024

h)


A,AB,ABC,ABCD,ABCDE,

ABCDEF,ABCDEFG,ABCDEFGH,

ABCDEFGHI,ABCDEFGHIJ


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-741-qpid-626