Let us solve an=−an−1+16an−2+4an−3−48an−4, where a0=0,a1=16,a2=−2,a3=142.
Firstly, let us solve the characteristic equation
k4=−k3+16k2+4k−48
k4+k3−16k2−4k+48=0
k4−4k2+k3−4k−12k2+48=0
k2(k2−4)+k(k2−4)−12(k2−4)=0
(k2+k−12)(k2−4)=0
(k−3)(k+4)(k−2)(k+2)=0
It follows that the characteristoc equation has the following roots:
k1=3, k2=−4, k3=2, k4=−2.
Therefore, the general solution is an=c13n+c2(−4)n+c32n+c4(−2)n.
Since a0=0,a1=16,a2=−2,a3=142, we conclude that
⎩⎨⎧0=a0=c1+c2+c3+c416=a1=3c1−4c2+2c3−2c4−2=a2=9c1+16c2+4c3+4c4142=a3=27c1−64c2+8c3−8c4
⎩⎨⎧c1+c2+c3+c4=03c1−4c2+2c3−2c4=165c1+12c2=−215c1−48c2=78
⎩⎨⎧1+c3+c4=010+2c3−2c4=16c2=−1c1=2
⎩⎨⎧c4=−2c3=1c2=−1c1=2
It follows that the final solusion is
an=2⋅3n−(−4)n+2n−2⋅(−2)n.