Solution to A committee of 8 is to be formed from 16 men and 10 women. In … - Sikademy
Author Image

Archangel Macsika

A committee of 8 is to be formed from 16 men and 10 women. In how many ways can the committee be formed if i) there are no restrictions. ii) there must be 4 men and 4 women. iii) there should be an even number of women. iv) there are more women than men. v) there are atleast 6 men.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

i) there are no restrictions:

n\raisebox{0.25em}{$C$}r=\frac{n!}{r!(n-r)!}

26\raisebox{0.25em}{$C$}8=\frac{26!}{8!(26-8)!}=\frac{26!}{8!\times18!}=1562275


ii) there must be 4 men and 4 women:

(16\raisebox{0.25em}{$C$}4)(10\raisebox{0.25em}{$C$}4)=(\frac{16!}{4!(16-4)!})(\frac{10!}{4!(10-4)!})

(16\raisebox{0.25em}{$C$}4)(10\raisebox{0.25em}{$C$}4)=(\frac{16!}{4!\times12!})(\frac{10!}{4!\times6!})=382200


iii) there should be an even number of women:

=(16\raisebox{0.25em}{$C$}6)(10\raisebox{0.25em}{$C$}2)+(16\raisebox{0.25em}{$C$}4)(10\raisebox{0.25em}{$C$}4)+(16\raisebox{0.25em}{$C$}2)(10\raisebox{0.25em}{$C$}6)+(16\raisebox{0.25em}{$C$}0)(10\raisebox{0.25em}{$C$}8)

=(\frac{16!}{6!(16-6)!})(\frac{10!}{4!(10-4)!})+(\frac{16!}{4!(16-4)!})(\frac{10!}{4!(10-4)!})+(\frac{16!}{2!(16-2)!})(\frac{10!}{6!(10-6)!})+(\frac{16!}{0!(16-0)!})(\frac{10!}{8!(10-8)!})

=(\frac{16!}{6!(10)!})(\frac{10!}{4!(6)!})+(\frac{16!}{4!(12)!})(\frac{10!}{4!(6)!})+(\frac{16!}{2!(14)!})(\frac{10!}{6!(4)!})+(\frac{16!}{0!(16)!})(\frac{10!}{8!(2)!})

=360360+382200+25200+45=767805


iv) there are more women than men:

=(16\raisebox{0.25em}{$C$}0)(10\raisebox{0.25em}{$C$}8)+(16\raisebox{0.25em}{$C$}1)(10\raisebox{0.25em}{$C$}7)+(16\raisebox{0.25em}{$C$}2)(10\raisebox{0.25em}{$C$}6)+(16\raisebox{0.25em}{$C$}3)(10\raisebox{0.25em}{$C$}5)

=(\frac{16!}{0!(16-0)!})(\frac{10!}{8!(10-8)!})+(\frac{16!}{1!(16-1)!})(\frac{10!}{7!(10-7)!})+(\frac{16!}{2!(16-2)!})(\frac{10!}{6!(10-6)!})+(\frac{16!}{3!(16-3)!})(\frac{10!}{5!(10-5)!})

=(\frac{16!}{!0(16)!})(\frac{10!}{8!(2)!})+(\frac{16!}{1!(15)!})(\frac{10!}{7!(1)!})+(\frac{16!}{2!(14)!})(\frac{10!}{6!(4)!})+(\frac{16!}{3!(13)!})(\frac{10!}{5!(5)!})

=45+1920+25200+141120=168285


v) there are atleast 6 men:

=(16\raisebox{0.25em}{$C$}6)(10\raisebox{0.25em}{$C$}2)+(16\raisebox{0.25em}{$C$}7)(10\raisebox{0.25em}{$C$}1)+(16\raisebox{0.25em}{$C$}8)(10\raisebox{0.25em}{$C$}0)

=(\frac{16!}{6!(16-6)!})(\frac{10!}{2!(10-2)!})+(\frac{16!}{7!(16-7)!})(\frac{10!}{1!(10-1)!})+(\frac{16!}{8!(16-8)!})(\frac{10!}{0!(10-0)!})

=(\frac{16!}{6!(10)!})(\frac{10!}{2!(8)!})+(\frac{16!}{7!(9)!})(\frac{10!}{1!(9)!})+(\frac{16!}{8!(8)!})(\frac{10!}{0!(10)!})

=360360+114400+12870=487630

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-432-qpid-319