Solution to complete \space question \space is \space \\ Let \space f:R→R \space is \space defined \space … - Sikademy
Author Image

Archangel Macsika

complete \space question \space is \space \\ Let \space f:R→R \space is \space defined \space by \space f(x)= \space \frac{x}{1+∣x∣}.\\ \space Then \space f(x) \space is \space \\ option \space \\(a) \space Injective \space but \space not \space surjective\\ (b)surjective \space but \space not \space Injective\\ (b)Injective \space as \space well \space as \space surjective\\ (b)Neither \space Injective \space nor \space \space surjective\\ ----------------------------\\ solution \space \\ correct \space option \space is \space A\\ explain:-\\ for \space x<0\\ f(x)=\frac{x}{1-x}\\ f(x_1)=f(x_2) \space implise \space \\ \frac{x_1}{1-x_1}=\frac{x_2}{1-x_2}\\ x_1-x_1.x_2=x_2-x_2.x_1\\ x_1=x_2...(i)\\ and \space for \space x>0\\ f(x)=\frac{x}{1+x}\\ f(x_1)=f(x_2) \space implise \space \\ \frac{x_1}{1+x_1}=\frac{x_2}{1+x_2}\\ x_1+x_1.x_2=x_2+x_2.x_1\\ x_1=x_2...(ii)\\ now \space according \space to \space given \space f(x)\\ so \space there \space not \space exist \space preimage \space for \space all \space real \space numbers\\ |f(x)|<1...(iii) hence \space from \space i, \space ii \space and \space iii,\\ f(x) \space is \space injective \space but \space not \space surjective.\\complete question is Let f:R→R is defined by f(x)= 1+∣x∣ x ​ . Then f(x) is option (a) Injective but not surjective (b)surjective but not Injective (b)Injective as well as surjective (b)Neither Injective nor surjective −−−−−−−−−−−−−−−−−−−−−−−−−−−− solution correct option is A explain:− for x<0 f(x)= 1−x x ​ f(x 1 ​ )=f(x 2 ​ ) implise 1−x 1 ​ x 1 ​ ​ = 1−x 2 ​ x 2 ​ ​ x 1 ​ −x 1 ​ .x 2 ​ =x 2 ​ −x 2 ​ .x 1 ​ x 1 ​ =x 2 ​ ...(i) and for x>0 f(x)= 1+x x ​ f(x 1 ​ )=f(x 2 ​ ) implise 1+x 1 ​ x 1 ​ ​ = 1+x 2 ​ x 2 ​ ​ x 1 ​ +x 1 ​ .x 2 ​ =x 2 ​ +x 2 ​ .x 1 ​ x 1 ​ =x 2 ​ ...(ii) now according to given f(x) so there not exist preimage for all real numbers ∣f(x)∣<1...(iii)hence from i, ii and iii, f(x) is injective but not surjective.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

solution\\ given:- \space \space f:A\to \space B \space and \space g:B\to \space C \space be \space functions.\\ proof \space that:- \space if \space gof \space is \space onto, \space then \space g \space is \space onto.\\ proof:- \space we \space will \space be \space show \space that \space g \space is \space onto \space \\ in \space other \space word \space , \space g:B \space \to \space C \space is \space onto \space (every \space element \space in \space C \space has \space preimage \space in \space B)\\ let \space z \space \isin \space C \space , \space there \space exists \space y \space \isin \space A \space (becouse \space gof \space is \space onto)\\ such \space that \space \\ gof(y)=z\\ g[f(y)]=z\\ g(x)=z \space (because \space f:A \space \to \space B \space , \space y\isin \space A \space , \space f(y)=x \space \isin \space B \space )\\ thus \space for \space every \space element \space z \space \isin \space C \space , \space there \space exit \space x \space \isin \space B, \space such \space that \space g(x)=z\\ g \space is \space onto \space \\

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-2724-qpid-1194