Solution to Consider the following sequence of successive numbers of the 2k -th power: 1, 2^2k, 3^2k, … - Sikademy
Author Image

Archangel Macsika

Consider the following sequence of successive numbers of the 2k -th power: 1, 2^2k, 3^2k, 4 ^2k, 5 ^2k, ... Show that the difference between the numbers in this sequence is odd for all k ∈ N.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let a_m=m^{2k}, m\in \Z^+ and a_n=n^{2k}, n\in \Z^+ be two numbers in this sequence.


n^{2k}-m^{2k}=(n^k-m^k)(n^k+m^k)

If m and n are not consistent numbers the difference n^{2k}-m^{2k} may be either odd or even.

The difference 4^{2k}-2^{2k} is even.

The difference 4^{2k}-3^{2k} is odd.


If m and n are not consistent numbers

Suppose n=m+1, m\in \Z^+

If m is even, then n=m+1 is odd:

\begin{cases} m &\text{is even } \\ n &\text{is odd } \end{cases}=>\begin{cases} m^k &\text{is even } \\ n^k &\text{is odd } \end{cases}=>

=>\begin{cases} n^k-m^k &\text{is odd } \\ n^k+m^k &\text{is odd } \end{cases}=>(n^k-m^k)(n^k+m^k) \text{is odd}

If m is odd, then n=m+1 is even:

\begin{cases} m &\text{is odd } \\ n &\text{is even } \end{cases}=>\begin{cases} m^k &\text{is odd } \\ n^k &\text{is even } \end{cases}=>

=>\begin{cases} n^k-m^k &\text{is odd } \\ n^k+m^k &\text{is odd } \end{cases}=>(n^k-m^k)(n^k+m^k) \text{is odd}

Therefore  the difference between the consistent numbers in this sequence is odd for all k ∈ N.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3561-qpid-2260