Solution to {F} Construct a relation on the set {a, b, c, d} that is a. reflexive, … - Sikademy
Author Image

Archangel Macsika

{F} Construct a relation on the set {a, b, c, d} that is a. reflexive, symmetric, but not transitive. b. irreflexive, symmetric, and transitive. c. irreflexive, antisymmetric, and not transitive. d. reflexive, neither symmetric nor antisymmetric, and transitive. e. neither reflexive, irreflexive, symmetric, antisymmetric, nor transitive.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let us consider a set \{a, b, c, d\}.

Reflexivity: A relation R on set S is called reflexive if (a, a) \in R for all a \in S.

Symmetry: A relation R on set S is called symmetric if (b, a) \in R whenever (a, b) \in R for all a, b \in S.

 

Anti symmetry: A relation R on set S is called anti symmetric if (b, a) \in R and (a, b) \in R than a=b for all a, b \in S.

Transitivity: a relation R on set S is called transitive if (a, b) \in R and (b, c) \in R than (a, c) \in R for all a, b, c \in S.

a) Consider a relation on \{a, b, c, d\} such that

 

R_{1}=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, a),(b, c),(c, b)\}

 

Now we can see that for all x \in\{a, b, c, d\},(x, x) \in R_{1} thus R_{1} is reflexive.

Also (b, a) \in R_{1} whenever (a, b) \in R_{1} and (c, b) \in R_{1} whenever (b, c) \in R_{1} thus we can say R_{1} is symmetric.

Again we can see that if (a, b) \in R_{1} and (b, c) \in R_{1} but (a, c) \notin R_{1} Hence R_{1} is not transitive.

b) Let R_{2}=\varnothing . Consider on a, b \in\{a, b, c, d\}, if b R R a then a R b " hence the R is symmetric.

Let a, b, c \in\{a, b, c, d\} , if c R a then a R b or b R R c " hence the R is transitivity.

Now take any element a \in S and observe that a \tilde{R} a . Thus R is not reflexive, hence it is irreflexive.

c) Consider a relation on \{a, b, c, d\} such that

 

R_{3}=\{(a, b),(b, c)\}

 

We can see that (a, a) \notin R_{3} so R_{3} is not reflexive and also we can see that no element is related to each other means it is irreflexive.

Also we have if a=b whenever (a, b) \in R_{3} and (b, a) \in R_{3} but here (b, a) \notin R_{3} so it is antisymmetric.

Again we can see that if (a, b) \in R_{1} and (b, c) \in R_{1} but (a, c) \notin R_{1} Hence R_{3} is not transitive.

d) Consider a relation on \{a, b, c, d\} such that

 

R_{4}=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, a),(c, a),(b, c)\}

 

We can see that for all x \in\{a, b, c, d\},(x, x) \in R_{4} thus R_{4} is reflexive.

Also (b, c) \in R_{4} but (c, b) \notin R_{4} thus we can say R_{4} is not symmetric. Now (b, a) \in R_{4} whenever (a, b) \in R_{4} but a \neq b thus R_{4} is not antisymmetric.

Again we can see that if (a, b) \in R_{4} and (b, c) \in R_{4} then (a, c) \in R_{4}. Hence R_{4} is transitive.

e) Consider a relation on \{a, b, c, d\} such that

 

R_{5}=\{(a, b),(b, a),(c, c),(a, c)\}

 

We can see that (a, a) \notin R_{5} so R_{5} is not reflexive and also we can see that (c, c) \in R_{5} means it is not irreflexive.

 

Also (a, c) \in R_{5} but (c, a) \notin R_{5} thus we can say R_{5} is not symmetric. Now (b, a) \in R_{5} whenever (a, b) \in R_{5} but a \neq b thus R_{5} is not antisymmetric.

Again we can see that if (b, a) \in R_{5} and (a, c) \in R_{5} then (b, c) \notin R_{5}. Hence R_{5} is transitive

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-337-qpid-224