Solution to Construct a truth table for each of these compound propositions. (i) (p → q) ↔ … - Sikademy
Author Image

Archangel Macsika

Construct a truth table for each of these compound propositions. (i) (p → q) ↔ (¬q → ¬p) (16 marks) ii) p ⊕ (p ∨ q) (8 marks) (i) Determine by using truth tables if (p ∧ q) → p is a tautology, contradiction or a contingency. Give reasons for your answer. (6 marks) (ii) Show that ¬(p ⊕ q) and p ↔ q are logically equivalent. (6 marks)

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let us construct a truth table for each of these compound propositions.


(i) (p → q) ↔ (¬q → ¬p)


\begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & p → q & \neg q & \neg p & ¬q → ¬p & (p → q) ↔ (¬q → ¬p) \\ \hline\hline 0 & 0 & 1 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 0 & 0 & 1 & 1\\ \hline\hline \end{array}


ii) p ⊕ (p ∨ q)


\begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & p ∨ q & p ⊕ (p ∨ q) \\ \hline\hline 0 & 0 & 0 & 0\\ \hline 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 0\\ \hline 1 & 1 & 1 & 0 \\ \hline\hline \end{array}


(i) Let us determine by using truth tables if (p ∧ q) → p is a tautology, contradiction or a contingency.


\begin{array}{||c|c||c|c||} \hline\hline p & q &p ∧ q & (p ∧ q) → p \\ \hline\hline 0 & 0 & 0 & 1\\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology. Therefore, this formula neither a contradiction, nor a contingency.


(ii) Let us show that ¬(p ⊕ q) and p ↔ q are logically equivalent using the truth table.


\begin{array}{||c|c||c|c|c||} \hline\hline p & q & p ⊕ q & ¬(p ⊕ q) & p ↔ q \\ \hline\hline 0 & 0 & 0 & 1 & 1\\ \hline 0 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0\\ \hline 1 & 1 & 0 & 1 &1\\ \hline\hline \end{array}


Since the last two columns are coinside, the formulas ¬(p ⊕ q) and p ↔ q are logically equivalent.

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-622-qpid-507