Define a bijective function. Explain with reasons whether the following functions are bijective or not. Find also the inverse f(x) = (2x+3) mod7, A=N7
The Answer to the Question
is below this banner.
Can't find a solution anywhere?
NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?
Get the Answers Now!You will get a detailed answer to your question or assignment in the shortest time possible.
Here's the Solution to this Question
Solution:
A bijective function has no unpaired elements and satisfies both injective (one-to-one) and surjective (onto) mapping of a set A to a set B. Thus, bijective functions satisfy injective as well as surjective function properties and have both conditions to be true. In mathematical terms, let f: A → B is a function; then, f will be bijective if every element ‘b’ in the co-domain B, has exactly one element ‘a’ in the domain A, such that f (a) =b.
Given
We have ...(i)
Then f is one-one and onto.
f is bijection.
Then, from (i)