Solution to 1.Determine for which integer values of n, 3n^3+2≤n^4 and prove your claim by mathematical induction. … - Sikademy
Author Image

Archangel Macsika

1.Determine for which integer values of n, 3n^3+2≤n^4 and prove your claim by mathematical induction. 2.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let us prove that 3n^3+2≤n^4 for all integers n\ge4.


If n=4, then 3\cdot 4^3+2=194<256=4^4.


Suppose that 3k^3+2≤k^4, where k\ge 4, and prove the statement for k+1.


Since k\ge 4, we get that 2k\ge 8, and hence 2k-1\ge 7. Then (2k-1)^2\ge 49, that is 4k^2-4k+1\ge 49. Therefore, 4k^2\ge4k+48.

It follows that

9k^2+9k+1=(3k^2+5k)+(6k^2+4k+1) =(3k+5)k+(6k^2+4k+1)\\ \le (4k+48)k+(6k^2+4k+1)\le 4k^2k+(6k^2+4k+1)=4k^3+6k^2+4k+1.


Consequently,

3(k+1)^3+2=3k^3+9k^2+9k+3=(3k^3+2)+(9k^2+9k+1)\\ \le k^4+4k^3+6k^2+4k+1=(k+1)^4.

According to mathematical induction principle, the statement 3n^3+2≤n^4 is true for all integers n\ge4.

Let us prove that 3n^3+2≤n^4 for all integers n\ge4.


If n=4, then 3\cdot 4^3+2=194<256=4^4.


Suppose that 3k^3+2≤k^4, where k\ge 4, and prove the statement for k+1.


Since k\ge 4, we get that 2k\ge 8, and hence 2k-1\ge 7. Then (2k-1)^2\ge 49, that is 4k^2-4k+1\ge 49. Therefore, 4k^2\ge4k+48.

It follows that

9k^2+9k+1=(3k^2+5k)+(6k^2+4k+1) =(3k+5)k+(6k^2+4k+1)\\ \le (4k+48)k+(6k^2+4k+1)\le 4k^2k+(6k^2+4k+1)=4k^3+6k^2+4k+1.


Consequently,

3(k+1)^3+2=3k^3+9k^2+9k+3=(3k^3+2)+(9k^2+9k+1)\\ \le k^4+4k^3+6k^2+4k+1=(k+1)^4.

According to mathematical induction principle, the statement 3n^3+2≤n^4 is true for all integers n\ge4.

v

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-1002-qpid-857