Solution to 1.Determine whether ¬(p∨(¬p∧q)) and ¬p∧¬q are equivalent without using truth table. 2.Determine whether the compound … - Sikademy
Author Image

Archangel Macsika

1.Determine whether ¬(p∨(¬p∧q)) and ¬p∧¬q are equivalent without using truth table. 2.Determine whether the compound proposition ~(p∨q)∨(~p∧q)∨p to tautology. 3.Determine whether (p → q)∧(p → r)≡p → (q ∧r) using a truth table

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let T denotes True and F denotes False.


1.Let us determine whether ¬(p∨(¬p∧q)) and ¬p∧¬q are equivalent:


¬(p∨(¬p∧q))=¬p\land\neg(¬p∧q))=¬p\land(p\lor\neg q))=


=¬p\land p\lor ¬p\land\neg q=F\lor ¬p\land\neg q= ¬p\land\neg q .


Therefore, the formulas are equivalent.


2.Let us determine whether the compound proposition \sim(p∨q)∨(\sim p∧q)∨p is tautology.


\sim(p∨q)∨(\sim p∧q)∨p=\sim(p∨q)∨(\sim p\lor p)∧(q∨p)=\sim(p∨q)∨T∧(q∨p)=


=\sim(p∨q)∨(q∨p)=\sim(p∨q)∨(p\lor q)=T.


Therefore, the formula \sim(p∨q)∨(\sim p∧q)∨p is tautology.



3.Let us determine whether (p → q)∧(p → r) ≡ p → (q ∧r) using a truth table:


\begin{array}{||c|c|c||c|c|c|c|c||} \hline\hline p & q & r & p\to q & p\to r & (p\to q)\land (p\to r) & q\land r & p\to(q\land r)\\ \hline\hline F & F & F & T & T & T & F & T\\ \hline F & F & T & T & T & T & F & T \\ \hline F & T & F & T & T & T & F & T \\ \hline F & T & T & T & T & T & T & T \\ \hline T & F & F & F & F & F & F & F\\ \hline T & F & F & F & T & F & F & F \\ \hline T & T & F & T & F & F & F & F\\ \hline T & T & T & T & T & T & T & T\\ \hline\hline \end{array}


Since the formulas (p\to q)\land (p\to r) and p\to(q\land r) always have the same truth values, they are logically equivalent.

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3507-qpid-2206