Determine whether each of these compound propositions is satisfiable. a) (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q) b) (p → q) ∧ (p → ¬q) ∧ (¬p → q) ∧ (¬p → ¬q) c) (p ↔ q) ∧ (¬p ↔ q)
The Answer to the Question
is below this banner.
Can't find a solution anywhere?
NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?
Get the Answers Now!You will get a detailed answer to your question or assignment in the shortest time possible.
Here's the Solution to this Question
A compound proposition is satisfiable if at least one entry of the truth table is TRUE. We find the truth table for each of the given compound propositions.
a) Truth table for (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)
b) Truth table for (p → q) ∧ (p → ¬q) ∧ (¬p → q) ∧ (¬p → ¬q)
c) Truth table for (p ↔ q) ∧ (¬p ↔ q)
From the above truth tables, we see that the first compound proposition alone is satisfiable as it contains one TRUE value and the remaining two compound propositions are contradiction as all the truth values are FALSE.