Solution to dx/dt=x-y dy/dt=x +3y - Sikademy
Author Image

Archangel Macsika

dx/dt=x-y dy/dt=x +3y

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

\dfrac{dy}{dt}=x+3y

\begin{pmatrix} dx/dt \\ dy/dt \end{pmatrix}=\begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}

Find the eigenvalues 


\begin{pmatrix} 1-\lambda & -1 \\ 1 & 3-\lambda \end{pmatrix}=0

(1-\lambda)(3-\lambda)+1=0

\lambda^2-4\lambda+4=0

\lambda_1=\lambda_2=2

 Find the eigenvectors.

\lambda=2


\begin{pmatrix} 1-2 & -1 \\ 1 & 3-2 \end{pmatrix}\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}=0

The eigen vector is


v=\begin{pmatrix} -1 \\ 1 \end{pmatrix}

For repeated eigenvalues \lambda_1=\lambda_2=2 and the eigenvector v=\begin{pmatrix} -1 \\ 1 \end{pmatrix}

the general solution takes form


\begin{pmatrix} x \\ y \end{pmatrix}=c_1e^{2t}\begin{pmatrix} -1 \\ 1 \end{pmatrix}+c_2 te^{2t}\begin{pmatrix} -1 \\ 1 \end{pmatrix}+c_2e^{2t}\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}

where


\begin{pmatrix} 1-2 & -1 \\ 1 & 3-2 \end{pmatrix}\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}=\begin{pmatrix} -1 \\ 1 \end{pmatrix}

\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}=\begin{pmatrix} 1 \\ 0 \end{pmatrix}

The solution is


\begin{pmatrix} x \\ y \end{pmatrix}=c_1e^{2t}\begin{pmatrix} -1 \\ 1 \end{pmatrix}+c_2 te^{2t}\begin{pmatrix} -1 \\ 1 \end{pmatrix}+c_2e^{2t}\begin{pmatrix} 1 \\ 0 \end{pmatrix}


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3132-qpid-1831