dtdx=x−y
dtdy=x+3y
(dx/dtdy/dt)=(11−13)(xy)
Find the eigenvalues
(1−λ1−13−λ)=0
(1−λ)(3−λ)+1=0
λ2−4λ+4=0
λ1=λ2=2
Find the eigenvectors.
λ=2
(1−21−13−2)(v1v2)=0
The eigen vector is
v=(−11)
For repeated eigenvalues λ1=λ2=2 and the eigenvector v=(−11)
the general solution takes form
(xy)=c1e2t(−11)+c2te2t(−11)+c2e2t(u1u2)
where
(1−21−13−2)(u1u2)=(−11)
(u1u2)=(10)
The solution is
(xy)=c1e2t(−11)+c2te2t(−11)+c2e2t(10)