Solution to Find out if the following functions are invertible or not, If it is invertible, then … - Sikademy
Author Image

Archangel Macsika

Find out if the following functions are invertible or not, If it is invertible, then find the rule of the inverse (f^(-1) (x)) 1. f:k → k^+ f(x)=x^2 2. k^+ → k^+ f(x)=1/x 3. f:k^+ → k^+ f(x)=x^2

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

A function is invertible if the function is surjective and injective.

(More infomartion: https://en.wikipedia.org/wiki/Inverse_function)


Definition. Let f  be a function whose domain is a set X . The function f  is said to be injective provided that for all a  and b  in X , whenever f(a)=f(b) , then a=b ; that is, f(a)=f(b)  implies a=b . Equivalently, if a\neq b , then f(a)\neq f(b) .

Symbolically,



\displaystyle \forall a,b\in X,\;\;f(a)=f(b)\Rightarrow a=b

which is logically equivalent to the contrapositive,



\displaystyle \forall a,b\in X,\;\;f(a)\neq f(b)\Rightarrow a\neq b

(More infomation: https://en.wikipedia.org/wiki/Injective_function)


Definition. A surjective function is a function whose image is equal to its codomain. Equivalently, a function f  with domain X  and codomain Y  is surjective, if for every y  in Y , there exists at least one x  in X  with \displaystyle f(x)=y .

Symbolically,

If \displaystyle f\colon X\rightarrow Y , then \displaystyle f  is said to be surjective if



\displaystyle \forall y\in Y,\,\exists x\in X,\;\;f(x)=y

(More information: https://en.wikipedia.org/wiki/Surjective_function)


Hint: For all these questions, I will consider that k\equiv\reals .

In our case,

(1) f : \reals\rightarrow\reals^+;\quad f(x)=x^2

The function f(x)=x^2 is not injective in the domain D(f)=\reals , since



(-3)^2=9=3^2,\quad\text{but}\quad -3\neq3

Conclusion.



\boxed{f : \reals\rightarrow\reals^+;\quad f(x)=x^2-\text{no inverse function}}

(2) f : \reals^+\rightarrow\reals^+;\quad f(x)=1/x

This function is surjective and injective, therefore the function has an inverse function.



y=\frac{1}{x}\longrightarrow x=\frac{1}{y}\longrightarrow\\[0.3cm] \boxed{f(x)=\frac{1}{x}\longrightarrow f^{-1}(x)=\frac{1}{x}}

Verification,



f\left(f^{-1}(x)\right)=\frac{1}{\displaystyle\frac{1}{x}}=x

(3) f : \reals^+\rightarrow\reals^+;\quad f(x)=x^2

This function is surjective and injective, therefore the function has an inverse function.



y=x^2\longrightarrow x=\sqrt{y}\longrightarrow\\[0.3cm] \boxed{f(x)=x^2\longrightarrow f^{-1}(x)=\sqrt{x}}

Verification,



f\left(f^{-1}(x)\right)=\left(\sqrt{x}\right)^2=x

ANSWER


(1) f : \reals\rightarrow\reals^+;\quad f(x)=x^2



f : \reals\rightarrow\reals^+;\quad f(x)=x^2-\text{no inverse function}

(2) f : \reals^+\rightarrow\reals^+;\quad f(x)=1/x



f(x)=\frac{1}{x}\longrightarrow f^{-1}(x)=\frac{1}{x}

(3) f : \reals^+\rightarrow\reals^+;\quad f(x)=x^2



f(x)=x^2\longrightarrow f^{-1}(x)=\sqrt{x}

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3920-qpid-2619