Solution to Find simpler statement forms that are logically equivalent to p ⊕ p and (p ⊕ … - Sikademy
Author Image

Archangel Macsika

Find simpler statement forms that are logically equivalent to p ⊕ p and (p ⊕ p) ⊕ p. b) Is (p ⊕ q) ⊕ r ≡ p ⊕ (q ⊕ r)? Justify your answer. c) Is (p ⊕ q) ∧ r ≡ (p ∧ r) ⊕ (q ∧ r)? Justify your answer.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

a) Let us find the truth table for p ⊕ p and (p ⊕ p) ⊕ p:


\begin{array}{|c|c|c|c|c|c|c|} \hline p & p\oplus p & (p\oplus p)\oplus p \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ \hline \end{array}


It follows that p ⊕ p\equiv 0 and (p ⊕ p) ⊕ p\equiv p.



b) Let us find the truth table for (p ⊕ q) ⊕ r and p ⊕ (q ⊕ r):


\begin{array}{|c|c|c|c|c|c|c|} \hline p & q & r & p\oplus q & (p\oplus q)\oplus r & q\oplus r & p\oplus (q\oplus r)\\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 1 & 0 & 1 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 1 & 1 & 0 & 0 & 0\\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1\\ \hline 1 & 0 & 1 & 1 & 0 & 1 & 0\\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 0\\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1\\ \hline \end{array}


Since the formulas (p ⊕ q) ⊕ r and p ⊕ (q ⊕ r) have the same truth value in all cases, they are logically equivalent. It follows that (p ⊕ q) ⊕ r ≡ p ⊕ (q ⊕ r).


c) Let us find the truth table for (p ⊕ q) ∧ r and (p ∧ r) ⊕ (q ∧ r):


\begin{array}{|c|c|c|c|c|c|c|c|} \hline p & q & r & p\oplus q & (p\oplus q)\land r & p\land r & q\land r &p\land r\oplus q\land r\\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\\ \hline 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ \hline 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1\\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ \hline 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0\\ \hline \end{array}


Since the formulas (p ⊕ q) ∧ r and (p ∧ r) ⊕ (q ∧ r) have the same truth value in all cases, they are logically equivalent. It follows that (p ⊕ q) ∧ r ≡ (p ∧ r) ⊕ (q ∧ r).


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3305-qpid-2004