Solution to Find the generating function of recurrence relation an+1_an=3n ,n less than 0 where ao=1 - Sikademy
Author Image

Archangel Macsika

Find the generating function of recurrence relation an+1_an=3n ,n less than 0 where ao=1

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

We have the recurrence relation a_{n+1}-a_n=3n, for n less than 0, where a_0=1.

Let's consider the sequence b_m=a_{-m}m=-n, such that m\in\mathbb{N}\cup\{0\}. Then

a_{n+1}-a_n=a_{-m+1}-a_{-m}=b_{m-1}-b_m=3n=-3m, or b_m-b_{m-1}=3m.

b_m=(b_m-b_{m-1})+(b_{m-1}-b_{m-2})+\dots+(b_1-b_0)+b_0

=3m+3(m-1)+\dots+3+b_0=\frac{3}{2}m(m+1)+1

The generating function of the sequence a_n is

f(z)=\sum\limits_{n=-\infty}^0a_nz^n=\sum\limits_{m=0}^{+\infty}b_mz^{-m}=

\sum\limits_{m=0}^{+\infty}\left(\frac{3}{2}m(m+1)+1\right)z^{-m}=\sum\limits_{m=0}^{+\infty}z^{-m}+\frac{3}{2}\sum\limits_{m=0}^{+\infty}m(m+1)z^{-m}

=\frac{1}{1-z^{-1}}+\frac{3}{2}z^2\frac{d^2}{dz^2}\sum\limits_{m=0}^{+\infty}z^{-m}=\frac{1}{1-z^{-1}}+\frac{3}{2}z^2\frac{d^2}{dz^2}\frac{1}{1-z^{-1}}

=\frac{1}{1-z^{-1}}+3\frac{z^2}{(z-1)^3}=\frac{1}{1-z^{-1}}+\frac{3z^{-1}}{(1-z^{-1})^3}


Answer. The generating function of the sequence a_n is f(z)=\frac{1}{1-z^{-1}}+\frac{3z^{-1}}{(1-z^{-1})^3}.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-2777-qpid-1334