We will look for a generating function in the form
G(z)=n=0∑∞anzn
1⋅a0=1⋅2=2
z⋅a1=5z
.........
znan=(6an−1−5an−2+1)zn
Then
G(z)=n=0∑∞anzn=a0+a1z+n=2∑∞anzn=2+5z+n=2∑∞(6an−1−5an−2+1)zn=2+5z+6n=2∑∞an−1zn−5n=2∑∞an−2zn+n=2∑∞zn
Since
n=2∑∞an−1zn=zn=2∑∞an−1zn−1=zn=1∑∞anzn=z(n=1∑∞anzn+a0−a0)=z(n=0∑∞anzn−a0)=z(G(z)−2)
n=2∑∞an−2zn=z2n=2∑∞an−2zn−2=z2n=0∑∞anzn=z2G(z)
n=2∑∞zn=n=2∑∞zn+z+1−z−1=n=0∑∞zn−z−1=1−z1−z−1=1−z1−(z+1)(1−z)=1−z1−1+z2=1−zz2
then
G(z)=2+5z+6z(G(z)−2)−5z2G(z)+1−zz2
G(z)−6zG(z)+5z2G(z)=2+5z−12z+1−zz2
G(z)(1−6z+5z2)=1−z(2−7z)(1−z)+z2
G(z)=(1−z)(1−6z+5z2)2−9z+8z2
Answer: G(z)=(1−z)(1−6z+5z2)2−9z+8z2