Solution:
Let
A={n∈Z∣(1≤n≤300)∧(3∣n)}B={n∈Z∣(1≤n≤300)∧(5∣n)}C={n∈Z∣(1≤n≤300)∧(7∣n)}
Then,
∣A∣=⌊300/3⌋=100∣ B∣=⌊300/5⌋=60∣C∣=⌊300/7⌋=42 ...(i)
(i) We need to find ∣A∪B∪C∣
By the principle of inclusion-exclusion
∣A∪B∪C∣=∣A∣+∣B∣+∣C∣−[∣A∩B∣+∣A∩C∣+∣B∩C∣]+∣A∩B∩C∣
Using (i),
∣A∣=⌊300/3⌋=100∣ B∣=⌊300/5⌋=60∣C∣=⌊300/7⌋=42∣ A∩B∣=⌊300/15⌋=20∣ A∩C∣=⌊300/21⌋=100∣ B∩C∣=⌊300/35⌋=8∣ A∩B∩C∣=⌊300/105⌋=2
∴∣A∪B∪C∣=100+60+42−(20+14+8)+2=162
(ii) We need to find ∣(A∩B)−C∣
By the definition of set-minus:
∣(A∩B)−C∣=∣A∩B∣−∣A∩B∩C∣=20−2=18
(iii) We need to find ∣B−(A∪C)∣
Now, ∣B−(A∪C)∣=∣B∣−∣B∩(A∪C)∣
Distributing B over the intersection
∣B∩(A∪C)∣=∣(B∩A)∪(B∩C)∣=∣B∩A∣+∣B∩C∣−∣(B∩A)∩(B∩C)∣=∣B∩A∣+∣B∩C∣−∣B∩A∩C∣=20+8−2=26
Thus, ∣B−(A∪C)∣=∣B∣−∣B∩(A∪C)∣=60−26=34