Solution to Find the simplest form for the following boolean expressions: 1) (A.B'.C')+(A'.B'.C')+(A'.B.C')+(A'.B'.C) 2) (A'.B.C)+(A'.B.C)+(A.B.C')+(A.B'.C')+(A'.B.C')+(A'.B'.C') 3) (A+B+C)(A+B'+C')(A+B+C')(A+B+C') … - Sikademy
Author Image

Archangel Macsika

Find the simplest form for the following boolean expressions: 1) (A.B'.C')+(A'.B'.C')+(A'.B.C')+(A'.B'.C) 2) (A'.B.C)+(A'.B.C)+(A.B.C')+(A.B'.C')+(A'.B.C')+(A'.B'.C') 3) (A+B+C)(A+B'+C')(A+B+C')(A+B+C') ( ' = Not )

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

1) A \cdot \overline B \cdot \overline C + \overline A \cdot \overline B \cdot \overline C + \overline A \cdot B \cdot \overline C + \overline A \cdot \overline B \cdot C = \overline A \cdot \overline B \left( {\overline C + C} \right) + A \cdot \overline B \cdot \overline C + \overline A \cdot B \cdot \overline C = \overline A \cdot \overline {B \cdot } 1 + A \cdot \overline B \cdot \overline C + \overline A \cdot B \cdot \overline C = \overline A \cdot \overline B + A \cdot \overline B \cdot \overline C + \overline A \cdot B \cdot \overline C = \overline A \left( {\overline B + B \cdot \overline C } \right) + A \cdot \overline B \cdot \overline C = \overline A \left( {\left( {\overline B + B} \right)\left( {\overline B + \overline C } \right)} \right) + A \cdot \overline B \cdot \overline C = \overline A \left( {\overline B + \overline C } \right) + A \cdot \overline B \cdot \overline C = \overline A \cdot \overline B + \overline A \cdot \overline C + A \cdot \overline B \cdot \overline C = \overline B \left( {\overline A + A \cdot \overline C } \right) + \overline A \cdot \overline C = \overline B \left( {\overline A + A} \right)\left( {\overline A + \overline C } \right) + \overline A \cdot \overline C = \overline B \left( {\overline A + \overline C } \right) + \overline A \cdot \overline C = \overline A \cdot \overline B + \overline B \cdot \overline C + \overline A \cdot \overline C

Answer: \overline A \cdot \overline B + \overline B \cdot \overline C + \overline A \cdot \overline C

2) \overline A \cdot B \cdot C + \overline A \cdot B \cdot C + AB\overline C + A \cdot \overline B \cdot \overline C + \overline A B\overline C + \overline A \cdot \overline B \cdot \overline C = \overline A \cdot B \cdot C + AB\overline C + A \cdot \overline B \cdot \overline C + \overline A B\overline C + \overline A \cdot \overline B \cdot \overline C = \overline B \cdot \overline C \left( {A + \overline A } \right) + \overline A \cdot B \cdot C + B\overline C \left( {A + \overline A } \right) = \overline B \cdot \overline C + \overline A \cdot B \cdot C + B\overline C = \overline C \left( {\overline B + B} \right) + \overline A \cdot B \cdot C = \overline C + \overline A \cdot B \cdot C = \left( {\overline C + \overline A \cdot B} \right)\left( {\overline C + C} \right) = \overline C + \overline A \cdot B

Answer: \overline C + \overline A \cdot B

3)

\left( {A + B + C} \right)\left( {A + \overline B + \overline C } \right)\left( {A + B + \overline C } \right)\left( {A + B + \overline C } \right) = \left( {A + B + C} \right)\left( {A + \overline B + \overline C } \right)\left( {A + B + \overline C } \right) = \left( {A + B + C} \right)\left( {A + \overline C } \right)\overline B B = \left( {A + B + C} \right)\left( {A + \overline C } \right) \cdot 0 = 0

Answer: 0


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-2884-qpid-1583