M(R)=⎝⎛0000010001110000000001110⎠⎞ matrix of relation R
Step 1: k=1
previous: ⎝⎛0ˉ0ˉ0ˉ0ˉ0ˉ1ˉ00011ˉ10000ˉ00000ˉ1110⎠⎞ next : ⎝⎛0000010001110000000001110⎠⎞
Matrix unchanged
Step 2: k=2
previous:⎝⎛00ˉ0001ˉ0ˉ0ˉ0ˉ1ˉ11ˉ00>000ˉ000>01ˉ11>0⎠⎞ next: ⎝⎛0000010001110010000011111⎠⎞
Thee edges have added.
Step 3: k=3
previous:⎝⎛000ˉ00100ˉ011ˉ1ˉ0ˉ0ˉ1ˉ000ˉ00111ˉ11⎠⎞ next: ⎝⎛0000010001110010000011111⎠⎞
Matrix is unchanged
Step 4: k=4 Matrix will not change because fourth column is zeros.
Step 5: k=5
previous:⎝⎛00000ˉ1>0>0>01ˉ11>0>01ˉ00000ˉ1ˉ1ˉ1ˉ1ˉ1ˉ⎠⎞
final: ⎝⎛0000011111111110000011111⎠⎞ - matrix of transitive closure
Thus Rˉ ={(1,2),(1,3),(1,5),(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(4,2),(4,3),(4,5),(5,2),(5,3),(5,5)}