Solution to For every integer n≥1,(n3+11n)⋅(8n−14n+27) is divisible by 6 7 42 84 - Sikademy
Author Image

Archangel Macsika

For every integer n≥1,(n3+11n)⋅(8n−14n+27) is divisible by 6 7 42 84

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Hint : Since you probably missed some degrees in the expression (8n-14n+27) , I can only complete part of the task.


Using mathematical induction, we prove that (n^3+11n) is divisible by 6 for n\in\mathbb{Z}^+ .

1 STEP: Induction basis

n=1\to 1^3+11\cdot1=12=2\cdot6\,\,\,\vdots\,\,\,6

2 STEP : Inductive guess

\text{For all}\,\,\,k\le n\,\,\,(k^3+11k)\,\,\,\vdots\,\,\,6



3 STEP : Inductive transition, it is necessary to prove that

\text{For}\,\,\,k=n+1\to \left((n+1)^3+11(n+1)\right)\,\,\,\vdots\,\,\,6

(n+1)^3+11(n+1)=n^3+3n^2+3n+1+11n+11=\\[0.3cm] =(n^3+11n)+(3n^2+3n)+12=\\[0.3cm] =\underbrace{(n^3+11n)}_{\text{divided into 6 hypothesis}}+3n(n+1)+6\cdot 2



It remains to understand why 3n(n+1)\,\,\,\vdots\,\,\,6 .

1 case : n=2k


3n(n+1)=3\cdot(2k)\cdot(2k+1)=6\cdot\left(k(2k+1)\right)\,\,\,\vdots\,\,\,6



2 case : n=2k+1


3n(n+1)=3\cdot(2k+1)\cdot(2k+1+1)=6\cdot\left((k+1)(2k+1)\right)\,\,\vdots\,\,6

Conclusion,


(n+1)^3+11(n+1)=(n^3+11n)+3n(n+1)+6\cdot2\,\,\vdots\,\,6Hint : Since you probably missed some degrees in the expression 

(8n-14n+27) , I can only complete part of the task.


Using mathematical induction, we prove that (n^3+11n) is divisible by 6 for n\in\mathbb{Z}^+ .

1 STEP: Induction basis

n=1\to 1^3+11\cdot1=12=2\cdot6\,\,\,\vdots\,\,\,6

2 STEP : Inductive guess

\text{For all}\,\,\,k\le n\,\,\,(k^3+11k)\,\,\,\vdots\,\,\,6



3 STEP : Inductive transition, it is necessary to prove that

\text{For}\,\,\,k=n+1\to \left((n+1)^3+11(n+1)\right)\,\,\,\vdots\,\,\,6

(n+1)^3+11(n+1)=n^3+3n^2+3n+1+11n+11=\\[0.3cm] =(n^3+11n)+(3n^2+3n)+12=\\[0.3cm] =\underbrace{(n^3+11n)}_{\text{divided into 6 hypothesis}}+3n(n+1)+6\cdot 2



It remains to understand why 3n(n+1)\,\,\,\vdots\,\,\,6 .

1 case : n=2k


3n(n+1)=3\cdot(2k)\cdot(2k+1)=6\cdot\left(k(2k+1)\right)\,\,\,\vdots\,\,\,6



2 case : n=2k+1


3n(n+1)=3\cdot(2k+1)\cdot(2k+1+1)=6\cdot\left((k+1)(2k+1)\right)\,\,\vdots\,\,6

Conclusion,


(n+1)^3+11(n+1)=(n^3+11n)+3n(n+1)+6\cdot2\,\,\vdots\,\,6Hint : Since you probably missed some degrees in the expression 

(8n-14n+27) , I can only complete part of the task.


Using mathematical induction, we prove that (n^3+11n) is divisible by 6 for n\in\mathbb{Z}^+ .

1 STEP: Induction basis

n=1\to 1^3+11\cdot1=12=2\cdot6\,\,\,\vdots\,\,\,6

2 STEP : Inductive guess

\text{For all}\,\,\,k\le n\,\,\,(k^3+11k)\,\,\,\vdots\,\,\,6



3 STEP : Inductive transition, it is necessary to prove that

\text{For}\,\,\,k=n+1\to \left((n+1)^3+11(n+1)\right)\,\,\,\vdots\,\,\,6

(n+1)^3+11(n+1)=n^3+3n^2+3n+1+11n+11=\\[0.3cm] =(n^3+11n)+(3n^2+3n)+12=\\[0.3cm] =\underbrace{(n^3+11n)}_{\text{divided into 6 hypothesis}}+3n(n+1)+6\cdot 2



It remains to understand why 3n(n+1)\,\,\,\vdots\,\,\,6 .

1 case : n=2k


3n(n+1)=3\cdot(2k)\cdot(2k+1)=6\cdot\left(k(2k+1)\right)\,\,\,\vdots\,\,\,6



2 case : n=2k+1


3n(n+1)=3\cdot(2k+1)\cdot(2k+1+1)=6\cdot\left((k+1)(2k+1)\right)\,\,\vdots\,\,6

Conclusion,


(n+1)^3+11(n+1)=(n^3+11n)+3n(n+1)+6\cdot2\,\,\vdots\,\,6

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3604-qpid-2303