Solution to ​ For the function f defined by f(n) =n2+ 1/n+ 1 for n∈N, show that … - Sikademy
Author Image

Archangel Macsika

​ For the function f defined by f(n) =n2+ 1/n+ 1 for n∈N, show that f(n)∈Θ(n). Use

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

f(n)=\dfrac{n^2+1}{n+1}\leq\dfrac{n^2+n}{n+1}=n, n\in \N

\N=\{1,2,...\}

By the definition f(n) is O(n) with C=1 and k=1.



\dfrac{n^2+1}{n+1}-\dfrac{n}{2}=\dfrac{2n^2+2-n^2-n}{2(n+1)}=

=\dfrac{n^2-n+\dfrac{1}{4}+\dfrac{7}{4}}{2(n+1)}=\dfrac{(n-\dfrac{1}{2})^2+\dfrac{7}{4}}{2(n+1)}>0,n\in\N


|f(n|)=|\dfrac{n^2+1}{n+1}|>\dfrac{1}{2} |n|, n\in\N

Then f(n) is \Omega(n).

\dfrac{1}{2}|n|<|f(n)|\leq|n|, n\in\N

By the definition this means that f(n)=\dfrac{n^2+1}{n+1} is \Theta(n), n\in\N.


f(n)=\dfrac{n^2+1}{n+1}\leq\dfrac{n^2+n}{n+1}=n, n\in \N

\N=\{1,2,...\}

By the definition f(n) is O(n) with C=1 and k=1.



\dfrac{n^2+1}{n+1}-\dfrac{n}{2}=\dfrac{2n^2+2-n^2-n}{2(n+1)}=

=\dfrac{n^2-n+\dfrac{1}{4}+\dfrac{7}{4}}{2(n+1)}=\dfrac{(n-\dfrac{1}{2})^2+\dfrac{7}{4}}{2(n+1)}>0,n\in\N


|f(n|)=|\dfrac{n^2+1}{n+1}|>\dfrac{1}{2} |n|, n\in\N

Then f(n) is \Omega(n).

\dfrac{1}{2}|n|<|f(n)|\leq|n|, n\in\N

By the definition this means that f(n)=\dfrac{n^2+1}{n+1} is \Theta(n), n\in\N.


f(n)=\dfrac{n^2+1}{n+1}\leq\dfrac{n^2+n}{n+1}=n, n\in \N

\N=\{1,2,...\}

By the definition f(n) is O(n) with C=1 and k=1.



\dfrac{n^2+1}{n+1}-\dfrac{n}{2}=\dfrac{2n^2+2-n^2-n}{2(n+1)}=

=\dfrac{n^2-n+\dfrac{1}{4}+\dfrac{7}{4}}{2(n+1)}=\dfrac{(n-\dfrac{1}{2})^2+\dfrac{7}{4}}{2(n+1)}>0,n\in\N


|f(n|)=|\dfrac{n^2+1}{n+1}|>\dfrac{1}{2} |n|, n\in\N

Then f(n) is \Omega(n).

\dfrac{1}{2}|n|<|f(n)|\leq|n|, n\in\N

By the definition this means that f(n)=\dfrac{n^2+1}{n+1} is \Theta(n), n\in\N.


f(n)=\dfrac{n^2+1}{n+1}\leq\dfrac{n^2+n}{n+1}=n, n\in \N

\N=\{1,2,...\}

By the definition f(n) is O(n) with C=1 and k=1.



\dfrac{n^2+1}{n+1}-\dfrac{n}{2}=\dfrac{2n^2+2-n^2-n}{2(n+1)}=

=\dfrac{n^2-n+\dfrac{1}{4}+\dfrac{7}{4}}{2(n+1)}=\dfrac{(n-\dfrac{1}{2})^2+\dfrac{7}{4}}{2(n+1)}>0,n\in\N


|f(n|)=|\dfrac{n^2+1}{n+1}|>\dfrac{1}{2} |n|, n\in\N

Then f(n) is \Omega(n).

\dfrac{1}{2}|n|<|f(n)|\leq|n|, n\in\N

By the definition this means that f(n)=\dfrac{n^2+1}{n+1} is \Theta(n), n\in\N.



Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3650-qpid-2349