(i)
f∘g=f(g(x))=f(2x)=(2x)2=4x2
(ii)
f∘h=f(h(x))=f(x−2)=(x−2)2=x2−4x+4
(iii)
h∘f=h(f(x))=h(x2)=x2−2
(iv)
(f∘g)∘h=(f∘g)(h(x))=(f∘g)(x−2)=
=f(g(x−2))=f(2(x−2))=(2(x−2))2=
=4x2−16x+16
(v)
f∘(g∘h)=f((g∘h)(x))=f(g(h(x)))=
=f(g(x−2))=f(2(x−2))=(2(x−2))2=
=4x2−16x+16
(i)
f∘g=f(g(x))=f(2x)=(2x)2=4x2
(ii)
f∘h=f(h(x))=f(x−2)=(x−2)2=x2−4x+4
(iii)
h∘f=h(f(x))=h(x2)=x2−2
(iv)
(f∘g)∘h=(f∘g)(h(x))=(f∘g)(x−2)=
=f(g(x−2))=f(2(x−2))=(2(x−2))2=
=4x2−16x+16
(v)
f∘(g∘h)=f((g∘h)(x))=f(g(h(x)))=
=f(g(x−2))=f(2(x−2))=(2(x−2))2=
=4x2−16x+16
(i)
f∘g=f(g(x))=f(2x)=(2x)2=4x2
(ii)
f∘h=f(h(x))=f(x−2)=(x−2)2=x2−4x+4
(iii)
h∘f=h(f(x))=h(x2)=x2−2
(iv)
(f∘g)∘h=(f∘g)(h(x))=(f∘g)(x−2)=
=f(g(x−2))=f(2(x−2))=(2(x−2))2=
=4x2−16x+16
(v)
f∘(g∘h)=f((g∘h)(x))=f(g(h(x)))=
=f(g(x−2))=f(2(x−2))=(2(x−2))2=
=4x2−16x+16