Solution to given 2 sets A and B, use membership table to show that (A-B)∪(B-A)=(A∪B) -(A∩B) - Sikademy
Author Image

Archangel Macsika

given 2 sets A and B, use membership table to show that (A-B)∪(B-A)=(A∪B) -(A∩B)

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Expert's answer
\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} A & B & A-B & B-A & (A-B\cup (B-A) \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 1\\ \hline 0 & 1 & 0 & 1 & 1\\ \hline 0 & 0 & 0 & 0 & 0 \end{array}


\def\arraystretch{1.5} \begin{array}{c:c:c} A\cup B & A\cap B & (A\cup B)-(A\cap B) \\ \hline 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \hline 0 & 0 & 0 \end{array}

Hence


(A-B)\cup(B-A)=(A\cup B)-(A\cap B)Expert's answer
\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} A & B & A-B & B-A & (A-B\cup (B-A) \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 1\\ \hline 0 & 1 & 0 & 1 & 1\\ \hline 0 & 0 & 0 & 0 & 0 \end{array}


\def\arraystretch{1.5} \begin{array}{c:c:c} A\cup B & A\cap B & (A\cup B)-(A\cap B) \\ \hline 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \hline 0 & 0 & 0 \end{array}

Hence


(A-B)\cup(B-A)=(A\cup B)-(A\cap B)

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-4040-qpid-2739