If R, S and T are relations over the set A, then: Prove that If R⊆S, then T∘R ⊆ T∘S and R∘T ⊆ S∘T
The Answer to the Question
is below this banner.
Can't find a solution anywhere?
NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?
Get the Answers Now!You will get a detailed answer to your question or assignment in the shortest time possible.
Here's the Solution to this Question
Let . Then there exists such that and . Since , we conclude that , and therefore, Consequently,
Let . Then there exists such that and . Since , we conclude that , and therefore, Consequently,