Solution to a. Let A and B and C be sets, prove that A∩(BUC) = (A∩B)U( A∩C). - Sikademy
Author Image

Archangel Macsika

a. Let A and B and C be sets, prove that A∩(BUC) = (A∩B)U( A∩C).

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let x \in A \cap \left( {B \cup C} \right) , then x \in A and x \in B \cup C . Then x \in A and x \in B or x \in C. Then x \in A and x \in B or x \in A and x \in C, but then x \in \left( {A \cap B} \right) \cup \left( {A \cap C} \right) , from where A \cap \left( {B \cup C} \right) \subset \left( {A \cap B} \right) \cup \left( {A \cap C} \right)

Let x \in \left( {A \cap B} \right) \cup \left( {A \cap C} \right) . Then x \in A and x \in B or x \in A and x \in C. Then x \in A and x \in B or x \in C, then x \in A and x \in B \cup C , but then x \in A \cap \left( {B \cup C} \right), from where A \cap \left( {B \cup C} \right) \supset \left( {A \cap B} \right) \cup \left( {A \cap C} \right) .

Since A \cap \left( {B \cup C} \right) \subset \left( {A \cap B} \right) \cup \left( {A \cap C} \right) and A \cap \left( {B \cup C} \right) \supset \left( {A \cap B} \right) \cup \left( {A \cap C} \right) then A \cap \left( {B \cup C} \right) = \left( {A \cap B} \right) \cup \left( {A \cap C} \right) .

The statement is proven

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3324-qpid-2023