Let a and b be two Natural Numbers, such that the greatest common divisor of a and b is 63, and the least common multiple of a and b is 44452800. If ’b’ is an odd number, what is the minimum value of ’a’ possible? [Hint: a · b = gcd(a, b) · lcm(a, b)]
The Answer to the Question
is below this banner.
Can't find a solution anywhere?
NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?
Get the Answers Now!You will get a detailed answer to your question or assignment in the shortest time possible.
Here's the Solution to this Question
Since is odd, then is odd.
Since their gcd is 63, then they are both multiples of 63.
The minimum value of a is 63.