Solution to Let A = (8 -1 2 2 0 -5) B = (-1 7 3 -2 … - Sikademy
Author Image

Archangel Macsika

Let A = (8 -1 2 2 0 -5) B = (-1 7 3 -2 1 5) and C = (2 1 3 5) (a) Calculate AB and A + B if they exist. (b) Verify that (AB)C = A(BC). (c) Calculate C-1 A.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

a)

(A+B) does not exist, since matrices are of different sizes (2x3 and 3x2)

AB=\begin{pmatrix} 8 & -1 &2\\ 2 & 0&-5 \end{pmatrix}\begin{pmatrix} -1 & 7 \\ 3 & -2\\ 1&5 \end{pmatrix}=\begin{pmatrix} -8-3+2 & 56+2+10 \\ -2-5 & 14-25 \end{pmatrix}=\begin{pmatrix} -9 & 68 \\ -7 & -11 \end{pmatrix}


b)

(AB)C=\begin{pmatrix} -9 & 68 \\ -7 & -11 \end{pmatrix}\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}=\begin{pmatrix} -18+204 & -9+340 \\ -14-33 & -7-55 \end{pmatrix}=\begin{pmatrix} 186 & 331 \\ -47 & -62 \end{pmatrix}


BC=\begin{pmatrix} -1 & 7 \\ 3 & -2\\ 1&5 \end{pmatrix}\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}=\begin{pmatrix} -2+21 & -1+35 \\ 6-6 & 3-10\\ 2+15&1+25 \end{pmatrix}=\begin{pmatrix} 19 & 34 \\ 0 & -7\\ 17&26 \end{pmatrix}


A(BC)=\begin{pmatrix} 8 & -1 &2\\ 2 & 0&-5 \end{pmatrix}\begin{pmatrix} 19 & 34 \\ 0 & -7\\ 17&26 \end{pmatrix}=\begin{pmatrix} 152+34 & 272+7+52 \\ 38-85 & 68-130 \end{pmatrix}=


=\begin{pmatrix} 186 & 331 \\ -47 & -62 \end{pmatrix}


c)

for C-1:

C_*=\begin{pmatrix} 5 & -3 \\ -1 & 2 \end{pmatrix} , C_*^T=\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}


|C|=10-3=7


C^{-1}=\frac{C_*^T}{|C|}=\frac{}{}=\frac{1}{7}\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}


C^{-1}A=\frac{1}{7}\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}\begin{pmatrix} 8 & -1 &2\\ 2 & 0&-5 \end{pmatrix}=\frac{1}{7}\begin{pmatrix} 40-2 & -5 &10+5\\ -24+4 & 3&-6-10 \end{pmatrix}=


=\frac{1}{7}\begin{pmatrix} 38 & -5 &15\\ -20 & 3&-16 \end{pmatrix}

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-966-qpid-821