Solution to a) Let A = (1,2,3,4) and R = ((1 ,2),(2,4),( 1,3 ),(3 ,2)}. Find the … - Sikademy
Author Image

Archangel Macsika

a) Let A = (1,2,3,4) and R = ((1 ,2),(2,4),( 1,3 ),(3 ,2)}. Find the transitive closure of R by Warshall’s algorithm. b) Let A = {a,b,c}. show that (P(A),c ) is a poset and draw its Hasse diagram. c) Define Chains and Antichains.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

(a) The matrix that represents R is shown below. It will be an initial matrix for the algorithm.


W^0=\begin{bmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}


For every step, W^n_{i,j} := W^{n-1}_{i,j} \vee (W^{n-1}_{i,k} \wedge W^{n-1}_{k,j}) for some k.

In other words, we can add a new pair (i, j) to the relation R^i corresponding to W^i, if and only if there is some k in R^{i-1} corresponding to W^{i-1}.


W^1=\begin{bmatrix} 0 & 1 & 1 & \color{red}1\\ 0 & 0 & 0 & 1\\ 0 & 1 & 0 & \color{red}1\\ 0 & 0 & 0 & 0 \end{bmatrix}


(1, 2) \in R^0 \wedge (2, 4) \in R^0 \implies (1, 4) \in R^1

(3, 2) \in R^0 \wedge (2, 4) \in R^0 \implies (3, 4) \in R^1


W^1=W^2 =W.


Answer: The resulting transitive closure is

R^+ = \{(1,2),(1,3), (1,4), (2,4), (3,2), (3,4)\}.



(b) P(A) = \big \{ \varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a,c\}, \{a, b,c\} \big \}.

Let's show S=(P(A), \subseteq) is a poset. Let's show that S satisfies the following three properties.

  1. Reflexivity. For every x \in P(A) \ x \subseteq x is trivially true.
  2. Antisymmetry. Let x, y \in P(A) and x \subseteq y \wedge y \subseteq z.Then x=y from the definition.
  3. Transitivity. Let x, y,z \in P(A) and x \subseteq y \wedge y \subseteq x. Then for alla \in x we have a \in y, and therefore a \in z. Thus x \subseteq z.

The Hasse diagram for (P(A), \subseteq) is shown below.



(c) A chain in a poset (P, \le) is a subset A \subseteq P such that any two elements x, y\in A are comparable (thus for every x, y \in A either x \le y or y \le x or both hold).

An antichain in a poset (P, \le) is a subset A \subseteq P such that no two elements x,y\in A are comparable.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3598-qpid-2297