Solution to Let R ⊆ S × S be an equivalence relation on a set S. For … - Sikademy
Author Image

Archangel Macsika

Let R ⊆ S × S be an equivalence relation on a set S. For an element x ∈ S, let S(x) = {y ∈ S : (x, y) ∈ R}. Show that for every pair of elements x, y ∈ S, either S(x) = S(y) or S(x) ∩ S(y) = ∅.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let R ⊆ S × S be an equivalence relation on a set S. For an element x ∈ S, let S(x) = \{y ∈ S : (x, y) ∈ R\}. Let us show that for every pair of elements x, y ∈ S, either S(x) = S(y) or S(x) ∩ S(y) = ∅.

Let S(x) ∩ S(y) \ne ∅. Then there exists z\in S(x) ∩ S(y). Let us show that in this case S(x) = S(y).

Let a\in S(x). Then (x,a)\in R. Since z\in S(x), we have that (x,z)\in R. Taking into account that the relation R is symmetric, we conclude that (z,x)\in R. Then the transitivity of R implies (z,a)\in R. Since z\in S(y), we get that (y,z)\in R, and transitivity of R implies (y,a)\in R. Consequently, a\in S(y), and hence S(x)\subseteq S(y).

Further, let a\in S(y). Then (y,a)\in R. Since z\in S(y), we have that (y,z)\in R. Taking into account that the relation is symmetric, we conclude that (z,y)\in R. Then the transitivity of R implies (z,a)\in R. Since z\in S(x), we get that (x,z)\in R, and transitivity of R implies (x,a)\in R. Consequently, a\in S(x), and hence S(y)\subseteq S(x).

Therefore, we get that if S(x) ∩ S(y) \ne ∅, then S(x) = S(y).

We conclude that for every pair of elements x, y ∈ S, either S(x) = S(y) or S(x) ∩ S(y) = ∅.

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-929-qpid-784