Solution to Let ρ be a relation on a set A. Define ρ^−1 = {(b, a) | … - Sikademy
Author Image

Archangel Macsika

Let ρ be a relation on a set A. Define ρ^−1 = {(b, a) | (a, b) ∈ ρ}. Also, for two relations ρ, σ on A, define the composite relation ρ ◦ σ as (a, c) ∈ ρ ◦ σ if and only if there exists b ∈ A such that (a, b) ∈ ρ and (b, c) ∈ σ. Prove the following assertions. i.) If ρ is non-empty, then ρ is an equivalence relation if and only if ρ^−1 ◦ ρ = ρ.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

If \rho^{-1}\circ\rho=\rho, then \rho can be not an equivalence relation. Indeed, if A=\{a,b,c\} and \rho=\{(a,b),(b,b),(a,a),(b,a)\}, then \rho^{-1}\circ\rho=\rho, but (c,c)\not\in\rho, so \rho is not an equivalence relation on A.

We prove that if \rho^{-1}\circ\rho=\rho, then \rho is an equivalence relation on A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

Indeed,

1)Let (a,b)\in\rho. Since \rho=\rho^{-1}\circ\rho, there is x\in A such that (a,x)\in\rho^{-1}, that is (x,a)\in\rho, and (x,b)\in\rho.

Since (x,a)\in\rho, we have (a,x)\in\rho^{-1}, so (a,a)\in\rho^{-1}\circ\rho=\rho. And since (x,b)\in\rho, we similarly obtain (b,b)\in\rho.

So \rho is reflexive on A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

2)Let (a,b)\in\rho. Then (b,a)\in\rho^{-1} and by point 1) we have (a,a)\in\rho, so (b,a)\in\rho^{-1}\circ\rho=\rho. So \rho is symmetric on A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

3)Let (a,b),(b,c)\in\rho. By point 2) we have (b,a)\in\rho, that is (a,b)\in\rho^{-1}. So since (b,c)\in\rho, we have (a,c)\in\rho^{-1}\circ\rho=\rho.

So \rho is transitive on A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

We obtain that \rho is an equivalence relation on A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

Now let \rho be an equivalence relation on a set A. Note that then A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}. Prove that \rho^{-1}\circ\rho=\rho.

Since \rho is symmetric, we have \rho^{-1}\subset\rho, so \rho^{-1}\circ\rho\subset\rho^2. Since \rho is transtitive, we have \rho^2\subset\rho, that is \rho^{-1}\circ\rho\subset\rho.

Now prove that \rho^{-1}\circ\rho\supset\rho.

Indeed, let (a,b)\in\rho. We have a\in A, so (a,a)\in\rho, that is (a,a)\in\rho^{-1}. Then (a,b)\in\rho^{-1}\circ\rho. So we obtain \rho^{-1}\circ\rho\supset\rho.

We have \rho^{-1}\circ\rho=\rho.

So we proved that \rho^{-1}\circ\rho=\rho if and only if \rho is an equivalence relation on A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3686-qpid-2385