Solution to Let A be a square matrix, and AT denotes the transpose of A. Show that … - Sikademy
Author Image

Archangel Macsika

Let A be a square matrix, and AT denotes the transpose of A. Show that the following hold true. (a) (AT)T=A (b) (A+B)T=AT+BT (c) (AB)T=BT AT.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let A=\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right] and B=\left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right].



(a) A^T=\left[ \begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{n1}\\ a_{12} & a_{22} & \ldots & a_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n} & a_{2n} & \ldots & a_{nn} \end{array} \right] and (A^T)^T=\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]=A.



(b) (A+B)^T=\left(\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]+ \left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right]\right)^T=


=\left[ \begin{array}{cccc} a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1n}+b_{1n}\\ a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2n}+b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1}+b_{n1} & a_{n2}+b_{n2} & \ldots & a_{nn}+b_{nn} \end{array} \right]^T=


= \left[ \begin{array}{cccc} a_{11}+b_{11} & a_{21}+b_{21} & \ldots & a_{n1}+b_{n1}\\ a_{12}+b_{12} & a_{22}+b_{22} & \ldots & a_{n2}+b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n}+b_{1n} & a_{2n}+b_{2n} & \ldots & a_{nn}+b_{nn} \end{array} \right]=


=\left[ \begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{n1}\\ a_{12} & a_{22} & \ldots & a_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n} & a_{2n} & \ldots & a_{nn} \end{array} \right]+ \left[ \begin{array}{cccc} b_{11} & b_{21} & \ldots & b_{n1}\\ b_{12} & b_{22} & \ldots & b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ b_{1n} & b_{2n} & \ldots & b_{nn} \end{array} \right]=A^T+B^T.


(c) (AB)^T=\left(\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]\cdot \left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right]\right)^T=


=\left[ \begin{array}{cccc} a_{11}b_{11}+\cdots+a_{1n}b_{n1} & a_{11}b_{12}+\cdots+a_{1n}b_{n2} & \ldots & a_{11}b_{1n}+\cdots+a_{1n}b_{nn}\\ a_{21}b_{11}+\cdots+a_{2n}b_{n1} & a_{21}b_{12}+\cdots+a_{2n}b_{n2} & \ldots & a_{21}b_{1n}+\cdots+a_{2n}b_{nn}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1}b_{11}+\cdots+a_{nn}b_{n1} & a_{n1}b_{12}+\cdots+a_{nn}b_{n2} & \ldots & a_{n1}b_{1n}+\cdots+a_{nn}b_{nn}\\ \end{array} \right]^T=


=\left[ \begin{array}{cccc} a_{11}b_{11}+\cdots+a_{1n}b_{n1} & a_{21}b_{11}+\cdots+a_{2n}b_{n1} & \ldots & a_{n1}b_{11}+\cdots+a_{nn}b_{n1}\\ a_{11}b_{12}+\cdots+a_{1n}b_{n2} & a_{21}b_{12}+\cdots+a_{2n}b_{n2} & \ldots & a_{n1}b_{12}+\cdots+a_{nn}b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{11}b_{1n}+\cdots+a_{1n}b_{nn} & a_{21}b_{1n}+\cdots+a_{2n}b_{nn} & \ldots & a_{n1}b_{1n}+\cdots+a_{nn}b_{nn}\\ \end{array} \right]=


= \left[ \begin{array}{cccc} b_{11} & b_{21} & \ldots & b_{n1}\\ b_{12} & b_{22} & \ldots & b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ b_{1n} & b_{2n} & \ldots & b_{nn} \end{array} \right] \cdot \left[ \begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{n1}\\ a_{12} & a_{22} & \ldots & a_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n} & a_{2n} & \ldots & a_{nn} \end{array} \right] =B^T A^T.

Let A=\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right] and B=\left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right].



(a) A^T=\left[ \begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{n1}\\ a_{12} & a_{22} & \ldots & a_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n} & a_{2n} & \ldots & a_{nn} \end{array} \right] and (A^T)^T=\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]=A.



(b) (A+B)^T=\left(\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]+ \left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right]\right)^T=


=\left[ \begin{array}{cccc} a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1n}+b_{1n}\\ a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2n}+b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1}+b_{n1} & a_{n2}+b_{n2} & \ldots & a_{nn}+b_{nn} \end{array} \right]^T=


= \left[ \begin{array}{cccc} a_{11}+b_{11} & a_{21}+b_{21} & \ldots & a_{n1}+b_{n1}\\ a_{12}+b_{12} & a_{22}+b_{22} & \ldots & a_{n2}+b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n}+b_{1n} & a_{2n}+b_{2n} & \ldots & a_{nn}+b_{nn} \end{array} \right]=