1. Let R be the relation on the set {0, 1, 2, 3} containing the ordered pairs (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), and (3, 0). Find the a) reflexive closure of R. b) symmetric closure of R. 2. Find the transitive closures of these relations on {1, 2, 3, 4}. a) {(1, 2), (2,1), (2,3), (3,4), (4,1)} b) {(2, 1), (2,3), (3,1), (3,4), (4,1), (4, 3)} c) {(1, 2), (1,3), (1,4), (2,3), (2,4), (3, 4)} d) {(1, 1), (1,4), (2,1), (2,3), (3,1), (3, 2), (3,4), (4, 2)} 3. Find the smallest relation containing the relation {(1, 2), (1, 4), (3, 3), (4, 1)} that is a) reflexive and transitive. b) symmetric and transitive. c) reflexive, symmetric, and transitive.
Hmmm... This is a tough one :(
We need the Motivation and Support! 💪
Our expert tutor in charge of answering this question
needs a cup of coffee to get pumped!
And unlock the solution to this question.