for n=1:
F1=1
let for n=k:
Fk=5(21+5)k−(21−5)k
then for n=k+1:
Fk+1=Fk+Fk−1=5(21+5)k−(21−5)k+5(21+5)k−1−(21−5)k−1=
=51((21+5)k(1+1+52)−(21−5)k(1+1−52))
(1+1+52)(1−51−5)=21+5
(1+1−52)(1+51+5)=21−5
So:
Fk+1=51((21+5)k(21+5)−(21−5)k(21−5))=5(21+5)k+1−(21−5)k+1