**Let A = {1, 2, 3, 4, 5} then define a relation R on A as (a.b)∈R iff a≤b and Relation Ton A as (a,b)∈T iff a/b. Represent R by an matrix. Is R Reflexive? Transitive? Give a valid reason for your answer. Is T Antisymmetric? Give a valid reason for your answer. Represent T by an matrix Represent T by an arrow diagram.**

The **Answer to the Question**

is below this banner.

**Here's the Solution to this Question**

A={1,2,3,5,5}

RELATION shows in matrix form

$\begin{bmatrix} 1& 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1\\ 0 & 0& 1& 1 &1\\ 0 & 0& 0 & 1&1\\ 0&0&0&0&1\\ \end{bmatrix}$

Reflexive:all diagonal elements be 1

Transitivity: aRb and bRc then aRc

Matrix shows transitivity

Relation ton=$\begin{bmatrix} 1& 1& 1&1&1\\ 0&1&0&1&0\\ 0&0&1&0&0\\ 0&0&0&1&0\\ 0&0&0&0&1\\ \end{bmatrix}$

Matrix shows reflexive all diagonal elements be 1

Antisymmetric shows : i Relate to j then j not relate to y

A={1,2,3,5,5}

RELATION shows in matrix form

$\begin{bmatrix} 1& 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1\\ 0 & 0& 1& 1 &1\\ 0 & 0& 0 & 1&1\\ 0&0&0&0&1\\ \end{bmatrix}$

Reflexive:all diagonal elements be 1

Transitivity: aRb and bRc then aRc

Matrix shows transitivity

Relation ton=$\begin{bmatrix} 1& 1& 1&1&1\\ 0&1&0&1&0\\ 0&0&1&0&0\\ 0&0&0&1&0\\ 0&0&0&0&1\\ \end{bmatrix}$

Matrix shows reflexive all diagonal elements be 1

Antisymmetric shows : i Relate to j then j not relate to y