Solution to Let us denote Sn = an + bn + cn for arbitrary numbers a, b, … - Sikademy
Author Image

Archangel Macsika

Let us denote Sn = an + bn + cn for arbitrary numbers a, b, c. It is known that S1 = 8, S2 = 66, S3 = 536 for some values of a, b, c. What is the smallest possible value of S242 — S41 S43?

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

S_{42}^2 - S_{41}*S_{43} = (a^{42} + b^{42} +c^{42})^2 -\\ (a^{41} + b^{41} +c^{41})*(a^{43} + b^{43} +c^{43}) = \\ a^{84} + b^{84} +c^{84} +2a^{42}b^{42} + 2a^{42}c^{42} +\\ +2b^{42}c^{42} -a^{84} - b^{84} -c^{84} - a^{41}(b^{43} +c^{43})-\\ -b^{41}(a^{43} +c^{43})-c^{41}(a^{43} +b^{43}) = \\ =2a^{42}b^{42} + 2a^{42}c^{42} +2b^{42}c^{42} - a^{41}(b^{43} +c^{43})-\\ -b^{41}(a^{43} +c^{43})-c^{41}(a^{43} +b^{43}) \\ \begin{cases} a+b+c = 8\\ a^2+b^2+c^2 = 66\\ a^3+b^3+c^3 = 536 \end{cases}\\ \text{since the system is symmetric there will be only one solutions}:\\ \begin{cases} c = 8 -a- b\\ a^2+b^2+c^2 = 66\\ a^3+b^3+c^3 = 536 \end{cases}\\ \begin{cases} a^2+b^2+64+a^2+b^2-16a-16b-2ab = 66\\ a^3+b^3+c^3 = 536 \end{cases}\\ \begin{cases} 2a^2+2b^2-16a-16b-2ab = 2\\ a^3+b^3+512 - 192(a+b) + 24(a+b)^2-(a+b)^3 = 536 \end{cases}\\ a = 0 , b= 4 -\sqrt{17} , c=4 +\sqrt{17}\\ 2(4 -\sqrt{17})^{42}(4 +\sqrt{17})^{42} - \\ -(4 -\sqrt{17})^{41}(4 +\sqrt{17})^{43} - \\ -(4 +\sqrt{17})^{41}(4 -\sqrt{17})^{43} = \\ = -(4 -\sqrt{17})^{41}(4 +\sqrt{17})^{41}*\\ *((4 -\sqrt{17})^{2} +2(4 -\sqrt{17})(4 +\sqrt{17}) + (4 +\sqrt{17})^{2}) = \\ = - (16-17)^{41} * (64) = -(-1)^{41} *(64) = 64\\ answer: 64


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3539-qpid-2238