Solution to Part (a): Let A and B are any sets then show that A-(A∩B)=(A∩A^c)∪(A∩B^c) by using … - Sikademy
Author Image

Archangel Macsika

Part (a): Let A and B are any sets then show that A-(A∩B)=(A∩A^c)∪(A∩B^c) by using membership table. Part (b): Draw Venn diagram to describe sets A, B, and C that satisfy the given conditions. A∩B≠ϕ,B∩C≠ϕ,A∩C=ϕ,A⊈B,C⊈B.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

(a):

\def\arraystretch{1.5} \begin{array}{c:c} A & B & A\cap B & A-(A\cap B) \\ \hline 0 & 0 & 0 & 0 \\ 0 &1 & 0 & 0 \\ 1 & 0 & 0& 1 \\ \hdashline 1 &1 & 1 & 0 \\ \hdashline \end{array}

\def\arraystretch{1.5} \begin{array}{c:c} A & B & A^C & B^C & A\cap A^C & A\cap B^C & (A\cap A^C)\cup (A\cap B^C) \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 0\\ \hdashline 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1& 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \end{array}

A-(A\cap B)=(A\cap A^C)\cup (A\cap B^C)


(b)


(a):

\def\arraystretch{1.5} \begin{array}{c:c} A & B & A\cap B & A-(A\cap B) \\ \hline 0 & 0 & 0 & 0 \\ 0 &1 & 0 & 0 \\ 1 & 0 & 0& 1 \\ \hdashline 1 &1 & 1 & 0 \\ \hdashline \end{array}

\def\arraystretch{1.5} \begin{array}{c:c} A & B & A^C & B^C & A\cap A^C & A\cap B^C & (A\cap A^C)\cup (A\cap B^C) \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 0\\ \hdashline 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1& 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \end{array}

A-(A\cap B)=(A\cap A^C)\cup (A\cap B^C)


(b)


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3878-qpid-2577