Solution to Proof the following by using logical equivalences identities. Are these system specifications consistent by using … - Sikademy
Author Image

Archangel Macsika

Proof the following by using logical equivalences identities. Are these system specifications consistent by using Reasoning Method? a) ¬(p ∧ (p → ¬q))→¬p b) ¬(q →¬p)→¬q

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

(a)

\neg(p\wedge(p\to \neg q)) \to \neg p\\ \neg(p\wedge(\neg p\vee \neg q)) \to \neg p \text{ Implication}\\ \neg((p\wedge\neg p) \vee(p\wedge\neg q)) \to \neg p \text{ Distributive }\\ \neg(F\vee(p\wedge \neg q)) \to \neg p \text{ Identity }\\ \neg(p\wedge\neg q) \to \neg p \text{ Absorption }\\ \neg\neg(p\wedge\neg q) \vee \neg p \text{ Implication }\\ (p \wedge \neg q) \vee \neg p \text{ Negation }\\ (p\vee \neg p) \wedge(\neg q \vee \neg p) \text{ Distributive }\\ T\wedge(\neg q \vee \neg p) \text{ Identity}\\ (\neg q \vee \neg p) \text{ Absorption }

(b)

\neg (q \to \neg p) \to \neg q\\ \neg\neg(\neg q \vee \neg p) \vee \neg q \text{ Implications }\\ (\neg q \vee \neg p) \vee \neg q \text{ Double Negation }\\ (\neg p \vee \neg q) \vee \neg q \text{ Commutative }\\ \neg p \vee (\neg q \vee \neg q) \text{ Associative }\\ \neg p \vee \neg q \text{ Idempotent Law}\\ \neg q \vee \neg p \text{ Commutative }

The are consistent by reasoning methods


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3333-qpid-2032