Solution to (a) Prove that for all integer n à ¢ ‰ ¥ 3, P (n +1,3) … - Sikademy
Author Image

Archangel Macsika

(a) Prove that for all integer n à ¢ ‰ ¥ 3, P (n +1,3) - P(n,3) = 3P(n,2) b)Prove that n.P(n-1,n-1) = P(n,n) c)show that C(n+1,k) = C (n,k-1) + C(n,k)

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

(a)


P(n+1,3)=\dfrac{(n+1)!}{(n+1-3)!}=(n+1)(n)(n-1)

P(n,3)=\dfrac{(n)!}{(n-3)!}=n(n-1)(n-2)

P(n,2)=\dfrac{(n)!}{(n-2)!}=n(n-1)

Then for n\geq3


P(n+1,3)-P(n,3)

=(n+1)(n)(n-1)-n(n-1)(n-2)

=n(n-1)(n+1-n+2)

=3n(n-1)=3P(n,2)

(b)


P(n-1,n-1)=\dfrac{(n-1)!}{(n-1-n+1)!}=(n-1)!

P(n,n)=\dfrac{(n)!}{(n-n)!}=n!

Then


nP(n-1, n-1)=n(n-1)!=n!=P(n, n)

(c)


C(n+1,k)=\dbinom{n+1}{k}=\dfrac{(n+1)!}{k!(n+1-k)!}

C(n,k-1)=\dbinom{n}{k-1}=\dfrac{n!}{(k-1)!(n-k+1)!}

C(n,k)=\dbinom{n}{k}=\dfrac{n!}{k!(n-k)!}

Then


C(n,k-1)+C(n,k)

=\dfrac{n!}{(k-1)!(n-k+1)!}+\dfrac{n!}{k!(n-k)!}

=\dfrac{n!(k+n-k+1)}{k!(n-k+1)!}=\dfrac{n!(n+1)}{k!(n-k+1)!}

=\dfrac{(n+1)!}{k!(n+1-k)!}=C(n+1,k)

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-1315-qpid-1053