(a)
P(n+1,3)=(n+1−3)!(n+1)!=(n+1)(n)(n−1)
P(n,3)=(n−3)!(n)!=n(n−1)(n−2)
P(n,2)=(n−2)!(n)!=n(n−1)
Then for n≥3
P(n+1,3)−P(n,3)
=(n+1)(n)(n−1)−n(n−1)(n−2)
=n(n−1)(n+1−n+2)
=3n(n−1)=3P(n,2)
(b)
P(n−1,n−1)=(n−1−n+1)!(n−1)!=(n−1)!
P(n,n)=(n−n)!(n)!=n!
Then
nP(n−1,n−1)=n(n−1)!=n!=P(n,n)
(c)
C(n+1,k)=(kn+1)=k!(n+1−k)!(n+1)!
C(n,k−1)=(k−1n)=(k−1)!(n−k+1)!n!
C(n,k)=(kn)=k!(n−k)!n!
Then
C(n,k−1)+C(n,k)
=(k−1)!(n−k+1)!n!+k!(n−k)!n!
=k!(n−k+1)!n!(k+n−k+1)=k!(n−k+1)!n!(n+1)
=k!(n+1−k)!(n+1)!=C(n+1,k)