Prove that in a graph G, the sum of the degrees of the vertices is equal to twice the number of edges. Consequently, the number of vertices with odd degree is even
The Answer to the Question
is below this banner.
Can't find a solution anywhere?
NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?
Get the Answers Now!You will get a detailed answer to your question or assignment in the shortest time possible.
Here's the Solution to this Question
Let G be a graph with e edges and n vertices v1,v2,v3,...,vn.
Since each edge is incident on two vertices, it contributes 2 to the sum of degree of vertices in graph G. Thus the sum of degrees of all vertices in G is twice the number of edges in G:
Let the degrees of first r vertices be even and the remaining (n−r) vertices have odd degrees, then:
is even.
But, the for each is odd. So, the number of terms in
must be even. So, is even.