Solution to ~(pVq)→r - Sikademy
Author Image

Archangel Macsika

~(pVq)→r

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let us construct the trush table for the formula \sim(p\lor q)→r:


\begin{array}{||c|c|c||c|c|c||} \hline\hline p & q & r & p\lor q & \sim(p\lor q) &\sim(p\lor q)→r \\ \hline\hline 0 & 0 & 0 & 0 & 1 & 0\\ \hline 0 & 0 & 1 & 0 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 0 & 1\\ \hline 0 & 1 & 1 & 1 & 0 & 1\\ \hline 1 & 0 & 0 & 1 & 0 & 1\\ \hline 1 & 0 & 1 & 1 & 0 & 1\\ \hline 1 & 1 & 0 & 1 & 0 & 1\\ \hline 1 & 1 & 1 & 1 & 0 &1\\ \hline\hline \end{array}


We conclude that this formula neither tautology nor contradiction.

Let us construct the trush table for the formula \sim(p\lor q)→r:


\begin{array}{||c|c|c||c|c|c||} \hline\hline p & q & r & p\lor q & \sim(p\lor q) &\sim(p\lor q)→r \\ \hline\hline 0 & 0 & 0 & 0 & 1 & 0\\ \hline 0 & 0 & 1 & 0 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 0 & 1\\ \hline 0 & 1 & 1 & 1 & 0 & 1\\ \hline 1 & 0 & 0 & 1 & 0 & 1\\ \hline 1 & 0 & 1 & 1 & 0 & 1\\ \hline 1 & 1 & 0 & 1 & 0 & 1\\ \hline 1 & 1 & 1 & 1 & 0 &1\\ \hline\hline \end{array}


We conclude that this formula neither tautology nor contradiction.

v

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-1001-qpid-856