i.Β (BβͺC)βA=(Bβ©C)β©A=[distributionΒ low]=
(Bβ©A)βͺ(Cβ©A)=(BβA)βͺ(CβA)
iiΒ
[(BβA)cβ©A]βAc=[(Bβ©Ac)cβ©A]β©(Ac)c=[MorganΒ low,doubleΒ complementΒ low]=(Bcβͺ(Ac)c)β©A)β©A=(BcβͺA)β©(Aβ©A)=[idempotentΒ law]=(BcβͺA)β©A=A.Β becauseAβ(BcβͺA)
iii.
(AcβͺB)cβ©Ac=[MorganΒ low]=((Ac)cβ©Bcβ©Ac=[doubleΒ complement]=Aβ©Bcβ©Ac=[commutativityΒ andΒ associativityΒ ofΒ β©]=(Aβ©Ac)β©B=[propertiesΒ ofΒ complement]=β
β©B=β
Question 2/
1) Basis of induction, n=2
(βj=12βAjβ)c=(A1ββͺA2β)c=[MorganΒ law]=A1cββ©A2cβ=βj=12βAjcβ
2) Induction step, let the statement is true for n=k, i.e.
(βj=1kβAjβ)c=Β βj=1kβAjcβ
Considerthe case n=k+1:
(βj=1k+1βAjβ)c=(βj=1kβAjββͺAk+1β)c=[MorganΒ law]=
(βj=1kβAjβ)cβ©Ak+1cβ=[inductionΒ hypothesis]Β =βj=1kβAjcββ©Ak+1cβ=βj=1k+1βAjcβΒ , so statement is true for n=k+1, induction step is verified, therefore the statement is proved by math inductionmethod.
Question 3.
LetΒ A1β=A,A2β=B,A3β=C
ThenΒ (AβͺBβͺC)c=Β (βj=13βAjβ)c=[QuestionΒ 2]=Β βj=13βAjcβ=(A1βΒ β©A3β)=Aβ©Bβ©C