Solution to Show that each of these conditional statements is a tautology by using truth tables. a) … - Sikademy
Author Image

Archangel Macsika

Show that each of these conditional statements is a tautology by using truth tables. a) (p ∧ q) → p b) p → (p ∨ q) c) ¬p → (p → q) d) (p ∧ q) → (p → q) e) ¬(p → q) → p f) ¬(p → q) → ¬q

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let us show that each of these conditional statements is a tautology by using truth tables.

 

a) (∧ q) → p               


\begin{array}{||c|c||c|c||} \hline\hline p & q &p ∧ q & (p ∧ q) → p \\ \hline\hline 0 & 0 & 0 & 1\\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology.


b) → (∨ q)


\begin{array}{||c|c||c|c||} \hline\hline p & q &p \lor q &p → (p ∨ q) \\ \hline\hline 0 & 0 & 0 & 1\\ \hline 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1\\ \hline 1 & 1 & 1 & 1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology.


c) → (→ q)                            


\begin{array}{||c|c||c|c|c||} \hline\hline p & q &\neg p & p \to q &\neg p → (p \to q) \\ \hline\hline 0 & 0 & 1 & 1 & 1\\ \hline 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 0 & 1\\ \hline 1 & 1 & 0 & 1 &1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology.


d) (∧ q) → (→ q)


\begin{array}{||c|c||c|c|c||} \hline\hline p & q &p ∧ q & p \to q &(p ∧ q) → (p → q)\\ \hline\hline 0 & 0 & 0 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1 &1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology.


e) ¬(→ q) → p                        


\begin{array}{||c|c||c|c|c||} \hline\hline p & q & p \to q& \neg (p → q) & \neg(p → q) → p \\ \hline\hline 0 & 0 & 1 & 0 & 1\\ \hline 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 & 1\\ \hline 1 & 1 & 1 & 0 &1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology.


f) ¬(→ q) → ¬q


\begin{array}{||c|c||c|c|c|c||} \hline\hline p & q & p \to q& \neg (p → q) & \neg q & \neg (p → q) \to \neg q\\ \hline\hline 0 & 0 & 1 & 0 & 1 & 1\\ \hline 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 & 1\\ \hline 1 & 1 & 1 & 0 & 0 & 1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-646-qpid-531