Solution to Show that if A, B, C, and D are sets with |A|=|B| and|C|=|D|, then |AxC|=|BxD|. - Sikademy
Author Image

Archangel Macsika

Show that if A, B, C, and D are sets with |A|=|B| and|C|=|D|, then |AxC|=|BxD|.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D is bijection, and therefore, |A\times C|=|B\times D|.

The Cartesian product of two sets X and Y, denoted X\times Y, is the set of all ordered pairs (x,y) where x is in Xand y is in Y, that is {\displaystyle X\times Y=\{\,(x,y)\mid x\in X\ {\text{ and }}\ y\in Y\,\}.}

Since |A|=|B|, there exists a bijection f: A\to B. By analogy, the equality |C|=|D| implies that there exists a bijection g: C\to D. Let us prove that the map h: A\times C\to B\times Dh(a,c)=(f(a), g(c)), is a bijection as well.

First prove that h is an injection. Let h(a_1, c_1)=h(a_2, c_2). So (f(a_1), g(c_1))=(f(a_2), g(c_2)). It follows that f(a_1)=f(a_2) and g(c_1)=g(c_2). Since f and g are injections, a_1=a_2 and c_1=c_2. Therefore, (a_1,c_1)=(a_2,c_2), and h is an injection.

Finally, prove that h is a surjection. Let (b,d)\in B\times D. Since f and g are surjections, there exist a\in A and c\in C such that f(a)=b and g(c)=d. Then h(a,c)=(f(a), g(c))=(b, d), and consequantly, h is a surjection.

It follows that h: A\times C\to B\times D