Solution to Show that if x is a real number, then ⌈x⌉ − ⌊x⌋ = 1 if … - Sikademy
Author Image

Archangel Macsika

Show that if x is a real number, then ⌈x⌉ − ⌊x⌋ = 1 if x is not an integer and ⌈x⌉ − ⌊x⌋ = 0 if x is an integer.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

1) x is integer

\lceil x\rceil -\lfloor x \rfloor =x-x=0.


2) x is not integer

Let \lfloor x \rfloor=n , then n<x<n+1 (or -n-1<-x<-n )

Let \lceil x \rceil =m , then m-1<x< m

We have

(m-1)+(-n-1)< x-x<m-n

m-n-2<0<m-n

\lceil x\rceil -\lfloor x \rfloor -2<0< \lceil x\rceil -\lfloor x \rfloor

0<\lceil x\rceil -\lfloor x \rfloor <2

Since \lceil x\rceil -\lfloor x \rfloor is integer, it folows that \lceil x\rceil -\lfloor x \rfloor =1


So, \lceil x\rceil -\lfloor x \rfloor =\begin{cases} 0, \quad x\in \mathbb{Z} \\ 1, \quad x\not\in \mathbb{Z} \end{cases}


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-737-qpid-622