Solution to Show that if n|m, where n and m are integers greater than 1, and if … - Sikademy
Author Image

Archangel Macsika

Show that if n|m, where n and m are integers greater than 1, and if a≡b(mod m), where a and b are integers, then a≡b(mod n).

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

\mathbf{Given:\;n|m\;where\;n\;and \;m\;are\;integers\;greater\;than\;1,and}

\mathbf{a\equiv b(mod\;m),\;where\;a\;and\;b\;are\;integers.}


\mathbf{To\;show: a\equiv b(mod\;n)}


\mathbf{Proof:\;Since\;n|m,i.e,\;n\;divides\;m,we\;have-}

\mathbf{\;\;\;\;\;\;\;\;\;\;\;\;\;\;m=n\alpha,where\;\alpha\;is\;an\;integer.\;\;\;\;................(A)}


\mathbf{Also\;a\equiv b(mod\;m) \implies m\;divides\;(a-b)\implies m|(a-b)}

\mathbf{\;\;\;\implies a-b=m\lambda,where\;\lambda\;is\;an\;integer.\;\;\;................(B)}


\mathbf{Substitute\;m=n\alpha\;in\;equation\;(B),we\;get-}

\mathbf{a-b=(n\alpha)\lambda}

\implies\mathbf{a-b=n(\alpha\lambda)\;\;\;\;\;(\because Multiplication\;is\;associative.)}

\implies \mathbf{n\;divides\;a-b}

\implies \mathbf{n|(a-b)}

\implies \mathbf{a-b\equiv0(mod\;n)}

\implies \mathbf{a\equiv b(mod\;n)}

\mathbf{Hence\;the\;result.}

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3670-qpid-2369