Solution to {F} Show that the following logical equivalences hold for the Peirce arrow ↓, where P … - Sikademy
Author Image

Archangel Macsika

{F} Show that the following logical equivalences hold for the Peirce arrow ↓, where P ↓ Q ≡ ∼(P ∨ Q). a. ∼P ≡ P ↓ P b. P ∨ Q ≡ (P ↓ Q) ↓ (P ↓ Q) c. P ∧ Q ≡ (P ↓ P) ↓ (Q ↓ Q) H d. Write P → Q using Peirce arrows only. e. Write P ↔ Q using Peirce arrows only.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

(a) By the definition of piece arrow-

   

  P\downarrow Q= ~(P\lor Q)

 

  P\downarrow Q =~(P\lor P)


  We have derived that P\downarrow P is logically equivalent with ~P

      ~P=P\downarrow P


(b)(P\downarrow Q)\downarrow (P\downarrow Q) =(~(P\lor Q))\downarrow (~(P\lor Q)

                       =(P\lor Q)\land (P\lor Q)\\ =P\lor Q


(c)(P\downarrow P)\downarrow (Q\downarrow Q) =(~(P\lor P))\downarrow (~(Q\lor Q))

                       =(P\lor P)\land (Q\lor Q)\\ =P\land Q


d)

P → Q\equiv \neg P \lor Q

\neg P\equiv P\downarrow P

P \lor Q \equiv \neg(P\downarrow Q)

\neg P \lor Q\equiv \neg(\neg P\downarrow Q)\equiv \neg((P\downarrow P)\downarrow Q)\equiv ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)

P → Q\equiv ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)


e)

P ↔ Q\equiv (P → Q) \land (Q → P)

P ↔ Q\equiv ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)\land((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)\equiv


[((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)]\downarrow

[((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)]

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-341-qpid-228