Solution to 1. Simplify the following Boolean expressions using algebraic methods. 1. A(A+B)+B(B+C)+C(C+A) 2. (A+B ̅)(B+C)+(A+B)(C+A ̅) … - Sikademy
Author Image

Archangel Macsika

1. Simplify the following Boolean expressions using algebraic methods. 1. A(A+B)+B(B+C)+C(C+A) 2. (A+B ̅)(B+C)+(A+B)(C+A ̅) 3. (A+B)(AC+AC ̅)+AB+B 4. A ̅(A+B)+(B+A)(A+B ̅)

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Basic Rules:




1.) A(A+B)+B(B+C)+C(C+A)


\Rightarrow A\cdot A+A\cdot B+B\cdot B+B\cdot C+C\cdot C+C\cdot A\\\Rightarrow A+AB+B+BC+C+CA\ \ \{\because A\cdot A=A\}

\Rightarrow A(1+B)+B(1+C)+C(1+A)\\\Rightarrow A+B+C\ \ \ \{\because \ 1+A=1\}



2.) (A+\bar B)(B+C)+(A+B)(C+\bar A)


\Rightarrow AB+AC+\bar BB+\bar BC+AC+A\bar A+BC+B\bar A\\\Rightarrow AB+AC+BC+\bar BC+\bar BA\ \ \ \{\because\ A \bar A=B\bar B=0\ \ \}

\Rightarrow B(A+\bar A)+AC+C(B+\bar B)\\\Rightarrow B\cdot 1+AC+C\cdot1\\\Rightarrow B+C(1+A)\\\Rightarrow B+C




3.) (A+B)(AC+A\bar C)+AB+B


\implies (A+B)\cdot A(C+\bar C)+B(1+A)\\\implies A(A+B)+B\\\implies A\cdot A +AB+B\\\implies A+AB+B\\\implies A(1+B)+B\\\implies A+B



4.) \bar A(A+B)+(B+A)(A+\bar B)


\implies \bar A\cdot A+\bar A\cdot B+BA+\bar BB+AA+A\bar B\\\implies 0+\bar AB+BA+0+AA+A\bar B\ \ \ \{\because\ \ \bar A\cdot A=0\ \&\ A\cdot A=A\}

\implies A+BA+\bar AB+A\bar B\\\implies A(1+B)+\bar AB+A\bar B\ (\because \ 1+B=1)\\\implies A+\bar AB+A\bar B\\\implies A(1+B)+\bar AB+A\bar B\\\implies (AA+AB)+\bar AB+A\bar B\\\implies AA+AB+A\bar A+\bar AB+A\bar B\\\implies (A+\bar A)(A+B)+A\bar B\\\implies 1\cdot(A+B)+A\bar B\\\implies A+B+A\bar B\\\implies A(1+\bar B)+B\\\implies A+B

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-2945-qpid-1644