Solution to Simplify the following expressions using laws of logic and put what law of logic did … - Sikademy
Author Image

Archangel Macsika

Simplify the following expressions using laws of logic and put what law of logic did you use or apply. p v ~(~p --> q) [(p --> q)^ ~q] --> ~p [(p v q) ^ (p --> ~r) ^ r ] --> q (p v ~q) ^ (p v q) 5. ~[p --> ~(p ^ q)]

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

(1) p \vee \sim (\sim p\to q)

=p \vee \sim(p\vee q) Implication

=p\vee (\sim p \wedge \sim q) De- Morgan's law

=(p \vee \sim p)\wedge(p \vee \sim q) Distributive law

=1 \wedge(p\vee \sim q) Known tautology

=(p \vee \sim q) Dominance

=(\sim q \vee p) Commutative

=q\to p Implication


(2)[(p \to q) \wedge \sim q]\to \sim p

=\sim[(p \to q) \wedge \sim q] \vee \sim p Implication

=\sim[(\sim p \vee q) \wedge \sim q] \vee \sim p Implication

=\sim[(\sim p \wedge \sim q) \vee (q \wedge \sim q)]\vee \sim p Distributive

= \sim [(\sim p \wedge \sim q)\vee 0]\vee \sim p Known contradiction

=\sim [(\sim p \wedge \sim q)] \vee \sim p Dominance

=(p\vee q) \vee \sim p De Morgan's Law

=(p\vee \sim p) \vee q Associativity

= 1\vee q Known tautology

=1 Dominance


(3)[(p \vee q)\wedge (p \to \sim r) \wedge r] \to q

=[(p\vee q)\wedge ( \sim p \vee \sim r)\wedge r]\to q Implication

=[(p \vee q) \wedge (\sim p \wedge r) \vee ( \sim r \wedge r)]\to q Distributive

=[(p \vee q) \wedge(\sim p \wedge r) \vee 0]\to q Known contradiction

=[(p \vee q] \wedge (\sim p \wedge r)]\to q Dominance

=\sim[(p \vee q) \wedge (\sim p \wedge r)] \to q Implication

=\sim(p \vee q) \vee \sim (\sim p \wedge r) \vee q De Morgan

=\sim (p \vee q) \vee (p \vee \sim r) \vee q De Morgan

=\sim(p \vee q) \vee (p\vee q)\vee \sim r Associativity

=1 \vee \sim r Known tautology

=1 Dominance


(4)(p \vee \sim q)\wedge (p \vee q)

=p \vee (\sim q \wedge q) Distributive law

=p \vee 0 Known contradiction

=p Dominance


(5)\sim[p \to \sim (p \wedge q)]

=\sim[\sim p\vee \sim(p \wedge q)] Implication

=p \wedge(p \wedge q) De Morgan's Law

=(p \wedge p) \wedge q Associative

=p \wedge q Idempotent

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3403-qpid-2102