Solution to Solve an+2 = 4an+1 + 21an; n  0 and a0 = 3; a1 = … - Sikademy
Author Image

Archangel Macsika

Solve an+2 = 4an+1 + 21an; n  0 and a0 = 3; a1 = 4

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Given recurrence relation is-

a_{n+2}=4a_{n+1}+21a_n Where, a_o=3,a_1=4


The characterstics equation of the above relation is given by-


x^2=4x+21\\\Rightarrow x^2-4x-21=0\\ \Rightarrow (x-7)(x+3)=0


Then the roots of equation are 7,-3

So ,

a_n=c_1(7)^n+c_2(-3)^n~~~~~-(1)


At n=0

a_o=c_1+c_1\Rightarrow c_1+c_2=3~~~~~-(2)


At n=1

a_1=7c_1-3c_2\Rightarrow 7c_1-3c_2=4~~~-(3)


On solving equation 2 and 3, we get-

c_1=1.3,c_2=1.7


Puuting the above values in eqs.(1)-

Hence eqs.(1)\implies


a_n=(1.3)7^n+(1.7)(-3)^n

Given recurrence relation is-

a_{n+2}=4a_{n+1}+21a_n Where, a_o=3,a_1=4


The characterstics equation of the above relation is given by-


x^2=4x+21\\\Rightarrow x^2-4x-21=0\\ \Rightarrow (x-7)(x+3)=0


Then the roots of equation are 7,-3

So ,

a_n=c_1(7)^n+c_2(-3)^n~~~~~-(1)


At n=0

a_o=c_1+c_1\Rightarrow c_1+c_2=3~~~~~-(2)


At n=1

a_1=7c_1-3c_2\Rightarrow 7c_1-3c_2=4~~~-(3)


On solving equation 2 and 3, we get-

c_1=1.3,c_2=1.7


Puuting the above values in eqs.(1)-

Hence eqs.(1)\implies


a_n=(1.3)7^n+(1.7)(-3)^n

Given recurrence relation is-

a_{n+2}=4a_{n+1}+21a_n Where, a_o=3,a_1=4


The characterstics equation of the above relation is given by-


x^2=4x+21\\\Rightarrow x^2-4x-21=0\\ \Rightarrow (x-7)(x+3)=0


Then the roots of equation are 7,-3

So ,

a_n=c_1(7)^n+c_2(-3)^n~~~~~-(1)


At n=0

a_o=c_1+c_1\Rightarrow c_1+c_2=3~~~~~-(2)


At n=1

a_1=7c_1-3c_2\Rightarrow 7c_1-3c_2=4~~~-(3)


On solving equation 2 and 3, we get-

c_1=1.3,c_2=1.7


Puuting the above values in eqs.(1)-

Hence eqs.(1)\implies


a_n=(1.3)7^n+(1.7)(-3)^n

Given recurrence relation is-

a_{n+2}=4a_{n+1}+21a_n Where, a_o=3,a_1=4


The characterstics equation of the above relation is given by-


x^2=4x+21\\\Rightarrow x^2-4x-21=0\\ \Rightarrow (x-7)(x+3)=0


Then the roots of equation are 7,-3

So ,

a_n=c_1(7)^n+c_2(-3)^n~~~~~-(1)


At n=0

a_o=c_1+c_1\Rightarrow c_1+c_2=3~~~~~-(2)


At n=1

a_1=7c_1-3c_2\Rightarrow 7c_1-3c_2=4~~~-(3)


On solving equation 2 and 3, we get-

c_1=1.3,c_2=1.7


Puuting the above values in eqs.(1)-

Hence eqs.(1)\implies


a_n=(1.3)7^n+(1.7)(-3)^n

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3352-qpid-2051