Given recurrence relation is-
an+2=4an+1+21an Where, ao=3,a1=4
The characterstics equation of the above relation is given by-
x2=4x+21⇒x2−4x−21=0⇒(x−7)(x+3)=0
Then the roots of equation are 7,−3
So ,
an=c1(7)n+c2(−3)n −(1)
At n=0
ao=c1+c1⇒c1+c2=3 −(2)
At n=1
a1=7c1−3c2⇒7c1−3c2=4 −(3)
On solving equation 2 and 3, we get-
c1=1.3,c2=1.7
Puuting the above values in eqs.(1)-
Hence eqs.(1)⟹
an=(1.3)7n+(1.7)(−3)n
Given recurrence relation is-
an+2=4an+1+21an Where, ao=3,a1=4
The characterstics equation of the above relation is given by-
x2=4x+21⇒x2−4x−21=0⇒(x−7)(x+3)=0
Then the roots of equation are 7,−3
So ,
an=c1(7)n+c2(−3)n −(1)
At n=0
ao=c1+c1⇒c1+c2=3 −(2)
At n=1
a1=7c1−3c2⇒7c1−3c2=4 −(3)
On solving equation 2 and 3, we get-
c1=1.3,c2=1.7
Puuting the above values in eqs.(1)-
Hence eqs.(1)⟹
an=(1.3)7n+(1.7)(−3)n
Given recurrence relation is-
an+2=4an+1+21an Where, ao=3,a1=4
The characterstics equation of the above relation is given by-
x2=4x+21⇒x2−4x−21=0⇒(x−7)(x+3)=0
Then the roots of equation are 7,−3
So ,
an=c1(7)n+c2(−3)n −(1)
At n=0
ao=c1+c1⇒c1+c2=3 −(2)
At n=1
a1=7c1−3c2⇒7c1−3c2=4 −(3)
On solving equation 2 and 3, we get-
c1=1.3,c2=1.7
Puuting the above values in eqs.(1)-
Hence eqs.(1)⟹
an=(1.3)7n+(1.7)(−3)n
Given recurrence relation is-
an+2=4an+1+21an Where, ao=3,a1=4
The characterstics equation of the above relation is given by-
x2=4x+21⇒x2−4x−21=0⇒(x−7)(x+3)=0
Then the roots of equation are 7,−3
So ,
an=c1(7)n+c2(−3)n −(1)
At n=0
ao=c1+c1⇒c1+c2=3 −(2)
At n=1
a1=7c1−3c2⇒7c1−3c2=4 −(3)
On solving equation 2 and 3, we get-
c1=1.3,c2=1.7
Puuting the above values in eqs.(1)-
Hence eqs.(1)⟹
an=(1.3)7n+(1.7)(−3)n