Euler's Theorem states, For relatively prime integers a and n
aϕ(n)≡1(modn).
(a)Here, a = 123, n = 101 and (123,101) = 1. Using Euler’s Theorem,123ϕ(101)≡1(mod101)123100≡1(mod101)1231000≡(123100)10≡110≡1(mod101)1231001≡123(mod101)≡22(mod101)
(b)Here, a = 17, n = 13 and (17,13) = 1. Using Euler’s Theorem,17ϕ(13)≡1(mod13)1712≡1(mod13)17120≡(1712)10≡110(mod13)≡1(mod13)17123≡17120⋅173(mod13)17123≡173(mod13)≡43(mod13) [Since 17≡4mod13]17123≡12(mod13)